
Pythonwhat Documentation
Release 1.2.0

Vincent Vankrunkelsven

Apr 19, 2017

Contents

1 Contents: 1
1.1 Home . 1
1.2 Quickstart Guide . 2
1.3 Simple Tests . 4
1.4 Part Checks . 13
1.5 Expressions . 23
1.6 Logic Tests . 31
1.7 Spec2 Changes . 34

2 Pythonwhat V1 39
2.1 Legacy Tests . 39

3 Indices and tables 93

Python Module Index 95

i

ii

CHAPTER 1

Contents:

Home

At DataCamp we build tools to learn data science interactively. See e.g. our online R tutorial to learn R Programming
and our Python For Data Science tutorial to learn Python.

pythonwhat?

A major part of DataCamp’s interactive learning is centered around automated and meaningful feedback. When a
student submits an incorrect answer, the system tells the student what he or she is doing wrong. This happens through
so-called submission correctness tests, or SCTs. An SCT is a test script that compares the different steps in a student’s
submission to the ideal solution, and generates meaningful feedback along the way.

pythonwhat is a Python package that can help you write these SCTs for interactive Python exercises on DataCamp.
It allows you to easily compare parts in the student’s submission with the solution code. pythonwhat provides
a bunch of functions to test object definitions, function calls, function definitions, for loops, while loops, and many
more. pythonwhat automatically generates meaningful feedback that’s specific to the student’s mistake; you can
also choose to override this feedback with custom messages.

Writing SCTs, for which pythonwhat is built, is only one part of creating DataCamp exercises. For general docu-
mentation on creating Python courses on DataCamp, visit the Teach Documentation. To write SCTs for R exercises
on DataCamp, have a look at testwhat.

How does it work?

When a student starts an exercise on DataCamp, a Python session is started and the pre_exercise_code (PEC) is
run. This code, that the author specifies, initializes the Python workspace with data, loads relevant packages etc, such
that students can start coding the essence of the topics treated. Next, a separate solution process is created, in which
the same PEC and actual solution code, also coded by the author, is executed.

When a student submits an answer, his or her submission is executed and the output is shown in the IPython Shell.
Then, the correctness of the submission is checked by executing the Submission Correctness Test, or SCT. Basi-

1

https://www.datacamp.com
https://www.datacamp.com/courses/free-introduction-to-r
https://www.datacamp.com/courses/intro-to-python-for-data-science
https://www.datacamp.com/teach/documentation
https://github.com/datacamp/testwhat

Pythonwhat Documentation, Release 1.2.0

cally, your SCT is a Python script with calls to pythonwhat test functions. pythonwhat features a variety of
functions to test a user’s submission in different ways; examples are test_object(), test_function() and
test_output_contains(). To do this properly, pythonwhat uses several resources:

• The student submission as text, to e.g. figure out which functions have been called.

• The solution code as text, to e.g. figure out whether the student called a particular function in the same way as
it is called in the solution.

• The student process, where the student code is executed, to e.g. figure out whether a certain object was created.

• The solution process, where the solution code is executed, to e.g. figure out whether an object that the student
created corresponds to the object that was created by the solution.

• The output that’s generated when executing the student code, to e.g. figure out if the student printed out some-
thing.

If, during execution of the SCT, a test function notices a mistake, an appropriate feedback will be generated and
presented to the student. It is always possible to override these feedback messages with your own messages. Defining
custom feedback will make your SCTs longer and they may be error prone (typos, etc.), but they typically give the
exercise a more natural and personalized feel.

If all test functions pass, a success message is presented to the student. pythonwhat has some messages in store
from which it can choose randomly, but you can override this with the success_msg() function.

Overview

To get started, make sure to check out the Quickstart Guide.

To robustly test the equality of objects, and results of evaluations, it has to fetch the information from the respective
processes, i.e. the student and solution processes. By default, this is done through a process of ‘dilling’ and ‘undilling’,
but it’s also possible to define your own converters to customize the way objects and results are compared. For more
background on this, check out Managing Processes. For some more background on the principle of ‘sub-SCTs’, i.e.
sets of tests to be called on a particular part or a particular state of a student’s submission, have a look at the Part
Checks article.

The remainder of the wiki goes over every test function that pythonwhat features, explaining all arguments and
covering different use cases. They will give you an idea of how, why and when to use them.

For more full examples of SCTs for Python exercises on DataCamp, check out the source files of the pythonwhat
tutorial course. In the chapter files there, you can can see the SCTs that have been written for several exercises.
Another useful course is introduction to Python.

After reading through this documentation, we hope writing SCTs for Python exercises on DataCamp becomes a
painless experience. If this is not the case and you think improvements to pythonwhat and this documentation
are possible, please let us know!

Quickstart Guide

Course Setup

This guide will cover the basics of creating submission correctness tests (SCTs) for DataCamp exercise. SCTs deal
with the running and testing code submissions, in order to give useful feedback. For help on the entire exercise creation
process, check out https://www.datacamp.com/teach/documentation. If this is your first time creating a course, see
their Getting Started screencast and Code Exercises article.

2 Chapter 1. Contents:

http://www.github.com/datacamp/courses-pythonwhat-tutorial
http://www.github.com/datacamp/courses-pythonwhat-tutorial
http://www.github.com/datacamp/courses-intro-to-python
https://github.com/datacamp/pythonwhat/blob/master/docs/source/mailto:content-engineering@datacamp.com
https://www.datacamp.com/teach/documentation#tab_getting_started
https://www.datacamp.com/teach/documentation#tab_code_exercises

Pythonwhat Documentation, Release 1.2.0

Your First Exercise

As a basic example, suppose we have an exercise that requires the student to print a variable named x. This exercise
could look something like this:

*** =pre_exercise_code
```{python}
x = 5
```

*** =sample_code
```{python}
# Print x

```

*** =solution
```{python}
# Print x
print(x)
```

*** =sct
```{python}
Ex().check_object('x').has_equal_value()
Ex().test_output_contains('5')
success_msg('Great job!')
```

The SCT uses three pythonwhat chains to test the correctness of the student’s submission.

1. check_object is used to test whether x was defined in the submission. In addition, the
has_equal_value() statement tests whether the value of x is equal between the submission and solution.

2. test_output_contains() tests whether the student printed out x correctly. The function looks at the
output the student generated with his or her submission, and then checks whether the string ‘5’ is found in this
output.

3. success_msg() is used to give positive feedback when all pythonwhat tests passed. If you do not use
success_msg(), pythonwhat will generate a kind message itself :).

In all the test statements above, feedback messages will be automatically generated when something goes wrong.
However, it is possible to manually set these feedback messages. For example, in the code below,

Ex().check_object(missing_msg="`x` is undefined!") \
.has_equal_value(incorrect_msg="wrong value for `x`")

the automatic messages for when x is undefined or incorrect are replaced with manual feedback. Now, if students
submit x = 4 instead of x = 5, they will see the message, “wrong value for x”. Finally, notice that you can use
Markdown syntax inside the strings here.

The same holds for has_equal_value(): you can use the incorrect_msg argument to specify a custom
message. For more information on all the different arguments you can set in the different pythonwhat functions,
have a look at the articles in this wiki, describing them in detail.

Next Steps

Test functions in pythonwhat are broken into 4 groups:

1.2. Quickstart Guide 3

Pythonwhat Documentation, Release 1.2.0

• Simple tests: look at, e.g., the output produced by an entire code submission.

• Part checks: focus on specific pieces of code, like a particular for loop.

• Expression tests: combined with part checks, these run pieces of code and evaluate the outcome.

• Logic tests: these allow logic like an or statement to be used with SCTs.

Simple Tests

Simple tests are the most basic tests available in pythonwhat. They usually don’t focus on specific pieces of a submis-
sion (like part checks), or re-run any code (:doc:‘like expression tests </expression_tests.md>). Instead, they simply
look at things like imports, printed output, or raw code text. A final, common use is to test the value of a variable in
the final environment (that is, after the submission of solution code have been run).

test_import

test_import(name, same_as=True, not_imported_msg=None, incorrect_as_msg=None, state=None)
Test import.

Test whether an import statement is used the same in the student’s environment as in the solution environment.

Parameters

• name (str) – the name of the package that has to be checked.

• same_as (bool) – if false, the alias of the package doesn’t have to be the same. Defaults
to True.

• not_imported_msg (str) – feedback message when the package is not imported.

• incorrect_as_msg (str) – feedback message if the alias is wrong.

Example Student code:

import numpy as np
import pandas as pa

Solution code:

import numpy as np
import pandas as pd

SCT:

test_import("numpy") # pass
test_import("pandas") # fail
test_import("pandas", same_as = False) # pass

def test_import(name,
same_as=True,
not_imported_msg=None,
incorrect_as_msg=None):

With test_import you can test whether a student correctly imported a certain package. As an option, you can also
specify whether or not the same alias should be used.

4 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

Python features many ways to import packages. All of these different methods revolve around the import, from and
as keywords. Suppose you want students to import matplotlib.pyplot as plt (the common way of importing
the plotting tools in matplotlib. A possible solution of your exercises could be the following:

*** =solution
```{python}
# Import plotting tools
import matplotlib.pyplot as plt
```

Below is a possible SCT for this exercise:

*** =sct
```{python}
test_import("matplotlib.pyplot")
success_msg("You nailed it!")
```

Here, test_import will parse both the student’s submission as well as the solution, and figure out which packages
were imported and how. Next, it checks if the matplotlib.pyplot package was imported and under which alias.
If the student did this and imported it as plt, all is good. If, however, the student submitted import matplotlib
(import entire package instead of module) or import matplotlib.pyplot as pppplot (incorrect alias),
test_import() will fail and generate the appropriate messages.

As usual, you can override these messages with your own:

*** =sct
```{python}
test_import("matplotlib.pyplot"),

not_imported_msg = "You can import pyplot by using
→˓`import matplotlib.pyplot`.",

incorrect_as_msg = "You should set the correct alias for
→˓`matplotlib.pyplot`, import it `as plt`.")

success_msg("You nailed it!")
```

With same_as, you can control whether or not the alias should be exactly the same. By default same_as=True,
so the alias (plt in the example) should also be used by student. If you set it to False:

*** =sct
```{python}
test_import("matplotlib.pyplot", same_as=False)
success_msg("You nailed it!")
```

The SCT will also pass if the student uses import matplotlib.pyplot as pppplot, a submission that
wouldn’t be accepted if same_as=True.

test_object

test_object(name, eq_condition=’equal’, eq_fun=None, do_eval=True, undefined_msg=None, incor-
rect_msg=None, state=None)

Test object.

The value of an object in the ending environment is compared in the student’s environment and the solution
environment.

Parameters

1.3. Simple Tests 5

Pythonwhat Documentation, Release 1.2.0

• name (str) – the name of the object which value has to be checked.

• eq_condition (str) – how objects are compared. Currently, only “equal” is supported,
meaning that the object in student and solution process should have exactly the same value.

• do_eval (bool) – if False, the object will only be checked for existence. Defaults to
True.

• undefined_msg (str) – feedback message when the object is not defined

• incorrect_msg (str) – feedback message if the value of the object in the solution
environment doesn’t match the one in the student environment.

Example Student code:

a = 1
b = 5

Solution code:

a = 1
b = 2

SCT:

test_object("a") # pass
test_object("b") # fail

Note that the student code below would fail both tests:

a = 1
b = 2
a = 3 # incorrect final value of a

test_object(name,
eq_condition="equal",
do_eval=True,
undefined_msg=None,
incorrect_msg=None)

test_object() enables you to test whether a student correctly defined an object.

As explained on the docs home, both the student’s submission as well as the solution code are executed, in separate
processes. test_object() looks at these processes and checks if the object specified in name is available in the
student process. Next, it checks whether the object in the student and solution process correspond. In case of a failure
along the way, test_object() will generate a meaningful feedback message that you can override.

Example 1

Suppose we have the following solution:

*** =solution
```{python}
# Create a variable x, equal to 3 * 5
x = 3 * 15
```

To test this we simply use:

6 Chapter 1. Contents:

https://github.com/datacamp/pythonwhat/blob/master/docs/source/../../../../../../../../../../Home.md

Pythonwhat Documentation, Release 1.2.0

*** =sct
```{python}
test_object("x")
success_msg("Great job!")
```

This SCT will test if the variable x is defined, and has the same ending value in the student process as in the solution
process. All of the following student submissions would be accepted by test_object():

• x = 15

• x = 12 + 3

• x = 3; x += 12

How the object x came about in the student’s submission, does not matter: only the end result, the actual content of x,
matters.

do_eval=True by default; if you set it to False, only the existence of an object x will be checked; its contents
will not be compared to the object x that’s in the solution process.

Object equality

When comparing more complex objects in Python, chances are they don’t use the equality operation you desire.
Python objects are compared using the == operator, and objects can overwrite its implementation to fit the object’s
needs. Internally, test_object() uses the == operation to compare objects, this means you could encounter
undesirable behaviour. Sometimes == just compares the actual object instances, and objects which are semantically
alike wont be according to test_object().

Say, for example, that you have the following solution:

*** =solution
from urllib.request import urlretrieve
fn1 = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_998/datasets/
→˓Chinook.sqlite'
urlretrieve(fn1, 'Chinook.sqlite')

Import packages
from sqlalchemy import create_engine
import pandas as pd

Create engine: engine
engine = create_engine('sqlite:///Chinook.sqlite')

Open engine connection
con = engine.connect()

An SCT for this exercise could be the following:

*** =sct
test_object("engine")
test_object("con")

Now, if the student enters the exact same code as the solution, the SCT will still fail. How? Well if you
try this out: create_engine('sqlite:///Chinook.sqlite') == create_engine('sqlite:///
Chinook.sqlite') you will notice that it returns False. This means the exact same execution doesn’t lead to
the the exact same object (although they might be semantically equal). We can’t use test_object like that here.
There are several ways to solve this:

1.3. Simple Tests 7

Pythonwhat Documentation, Release 1.2.0

Workaround

*** =sct
test_object("engine", do_eval=False)
test_function("create_engine")
test_object("con", do_eval=False)
test_function("engine.connect")

This will check whether the objects engine and con are declared, without checking for it’s value. With
test_function() we check whether they used the correct functions. This will not test the exact same thing
as the first SCT, but it’s effective 99% of the time.

Equality operations hardcoded in pythonwhat

A side note here, complex objects that are used a lot have an custom implementation of equality built for them
in pythonwhat. These objects can be tested with a regular test_object(...), without having to use
do_eval=False. At the moment, the more complex classes that can be tested are:

• numpy.ndarray

• pandas.DataFrame

• pandas.Series

Of course primitive classes like str, int, list, dict, ... can be tested without any problems too, as well as objects
of which the class has a semantically correct implementation of the == operator.

Manually define a converter

As explained in the Processes article, objects are extracted from their respected processes by ‘dilling’ and ‘undilling’
them. However, you can manually set a ‘converter’ with the set_converter() function. This will override the
default dilling and undilling behavior, and enables you to make simplified representations of custom objects, testing
only exactly what you want to test.

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

check_object

check_object(index, missing_msg=’FMT:Are you sure you defined the {typestr}, ‘{index}‘?’, ex-
pand_msg=’FMT:Check the variable ‘{index}‘. ‘, state=None, typestr=’variable’)

is_instance

is_instance(inst, not_instance_msg=’FMT:Is it a {inst.__name__}?’, name=None, state=None)

has_key

has_key(key, key_missing_msg=”__JINJA__:There is no {{ ‘column’ if ‘DataFrame’ in parent.typestr else
‘key’ }} inside {{parent.index}}.”, name=None, state=None)

8 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

has_equal_key

has_equal_key(key, incorrect_value_msg=’FMT: Have you specified the correct value for “{key}” in-
side ‘{parent[sol_part][name]}‘?’, key_missing_msg=”__JINJA__:There is no {{ ‘col-
umn’ if ‘DataFrame’ in parent.typestr else ‘key’ }} inside {{parent.index}}.”, name=None,
state=None)

test_output_contains

test_output_contains(text, pattern=True, no_output_msg=None, state=None)
Test the output.

Tests if the output contains a (pattern of) text.

Parameters

• text (str) – the text that is searched for

• pattern (bool) – if True, the text is treated as a pattern. If False, it is treated as plain
text. Defaults to False.

• no_output_msg (str) – feedback message to be displayed if the output is not found.

test_output_contains(text,
pattern=True,
no_output_msg=None)

We can test the output of the student contains with test_output_contains(). This function will compare the
given text with the text in the student’s output and see if we have a match. You can use regular expressions or not,
that’s completely up to you.

Here’s an example of an exercise with test_student_typed(), suppose the solution looks like this:

*** =solution
```{python}
# Print the "This is some ... stuff" to the shell
print("This is some weird stuff")
```

The following SCT tests whether the student outputs This is some weird stuff:

*** =sct
```{python}
test_output_contains("This is some weird stuff", pattern = False)
success_msg("Great job!")
```

Notice that we set pattern to False, this will cause test_output_contains() to search for the pure string,
no patterns are used. This SCT is not robust, because it won’t be accepted if the student submits print("This is
some cool stuff"), for example. Therefore, it’s a good idea to use regular expressions. pattern=True by
default, so there’s no need to specify this:

*** =sct
```{python}
test_output_contains(/This is some \w* stuff/,

no_output_msg = "Print out `This is some ... stuff` to the
→˓output, fill in `...` with a word you like.")
success_msg("Great job!")
```

1.3. Simple Tests 9

https://docs.python.org/3.5/library/re.html

Pythonwhat Documentation, Release 1.2.0

Now, different printouts will be accepted. Notice that we also specified no_output_msg here. If the pattern is
not found in the output generated, this message will be shown instead of a message that’s automatically generated by
pythonwhat.

test_student_typed

test_student_typed(text, pattern=True, not_typed_msg=None, state=None)
Test the student code.

Tests if the student typed a (pattern of) text.

Parameters

• text (str) – the text that is searched for

• pattern (bool) – if True, the text is treated as a pattern. If False, it is treated as plain
text. Defaults to False.

• not_typed_msg (str) – feedback message to be displayed if the student did not type
the text.

test_student_typed(text,
pattern=True,
not_typed_msg=None)

test_student_typed() will look through the student’s submission to find a match with the string specified in
text. With pattern, you can declare whether or not to use regular expressions.

Suppose the solution of an exercise looks like this:

*** =solution
```{python}
# Calculate the sum of all single digit numbers and assign the result to 's'
s = sum(range(10))

# Print the result to the shell
print(s)
```

The following SCT tests whether the student typed "sum(range(":

*** =sct
```{python}
test_student_typed("sum(range(", pattern = False)
success_msg("Great job!")
```

Notice that we set pattern to False, this will cause test_student_typed() to search for the pure string, no
patterns are used. This SCT is not that robust though, it won’t accept something like sum(range(10)). This is
why we should almost always use regular expressions in test_student_typed. For example:

*** =sct
```{python}
test_student_typed("sum\s*\(\s*range\s*\(", not_typed_msg="You didn't use `range()`
→˓inside `sum()`.")
success_msg("Great job!")
```

10 Chapter 1. Contents:

https://docs.python.org/3.5/library/re.html

Pythonwhat Documentation, Release 1.2.0

We also used not_typed_msg here, which will control the feedback given to the student when
test_student_typed() doesn’t pass. Note that also success_msg() is used here, this is the message that is
shown when the SCT has passed.

In general, you should avoid using test_student_typed(), as it imposes severe restrictions on how a student
can solve an exercise. Often, there are different ways to solve an exercise. Unless you have a very advanced regular
expression, test_student_typed() will not be able to accept all these different approaches. For the example
above, test_function() would be more appropriate.

has_equal_ast

has_equal_ast(incorrect_msg=’FMT: Your code does not seem to match the solution.’, code=None, ex-
act=True, state=None)

Test whether abstract syntax trees match between the student and solution code.

Parameters

• incorrect_msg – message displayed when ASTs mismatch.

• code – optional code to use instead of the solution AST

• exact – whether the representations must match exactly. If false, the solution AST only
needs to be contained within the student AST (similar to using test student typed).

Example Student and Solution Code:

dict(a = 'value').keys()

SCT:

all pass
Ex().has_equal_ast()
Ex().has_equal_ast(code = "dict(a = 'value').keys()")
Ex().has_equal_ast(code = "dict(a = 'value')", exact = False)

An abstract syntax tree (AST) is a way of representing the high-level structure of python code.

Example: quotes

Whether you use the concrete syntax x = "1" or x = '1', the abstract syntax is the same: x is being assigned to
the string “1”.

Example: parenthesis

Grouping by parentheses produces the same AST, when the same statement would work the same without them.
For example, (True or False) and True, and True or False and True, are the same due to operator
precedence.

Example: spacing

The same holds for different types of spacing that essentially specify the same statement: x = 1 or x = 1.

1.3. Simple Tests 11

Pythonwhat Documentation, Release 1.2.0

Caveat: evaluating

What the AST doesn’t represent is values that are found through evaluation. For example, the first item in the list in

x = 1
[x, 2, 3]

and

[1, 2, 3]

Is not the same. In the first case, the AST represents that a variable x needs to be evaluated in order to find out what
its value is. In the second case, it just represents the value 1.

test_mc

test_mc(correct, msgs, state=None)
Test multiple choice exercise.

Test for a MultipleChoiceExercise. The correct answer (as an integer) and feedback messages are passed to this
function.

Parameters

• correct (int) – the index of the correct answer (should be an instruction). Starts at 1.

• msgs (list(str)) – a list containing all feedback messages belonging to each choice of
the

• The list should have the same length as the number of
instructions. (student.) –

test_mc(correct, msgs)

Multiple choice exercises are straightforward to test. Use test_mc() to provide tailored feedback for both the
incorrect options, as the correct option. Below is the code for a multiple choice exercise example, with an SCT that
uses test_mc:

--- type:MultipleChoiceExercise lang:python xp:50 skills:2
The author of Python

Who is the author of the Python programming language?

*** =instructions
- Roy Co
- Ronald McDonald
- Guido van Rossum

*** =hint
Just google it!

*** =sct
```{python}
test_mc(correct = 3,

msgs = ["That's someone who makes soups.",
"That's a clown who likes burgers.",
"Correct! Head over to the next exercise!"])

```

12 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

The first argument of test_mc(), correct, should be the number of the correct answer in this list. Here, the
correct answer is Guido van Rossum, corresponding to 3. The msgs argument should be a list of strings with a length
equal to the number of options. We encourage you to provide feedback messages that are informative and tailored to
the (incorrect) option that people selected. Make sure to correctly order the feedback message such that it corresponds
to the possible answers that are listed in the instructions tab. Notice that there’s no need for success_msg() in
multiple choice exercises, as you have to specify the success message inside test_mc(), along with the feedback
for incorrect options.

Part Checks

Check Syntax

In Brief

While functions beginning with test_, such as test_student_typed look over some code or output, check_
functions allow us to zoom in on parts of that student and solution code.

For example, check_list_comp examines list comprehensions by breaking them into 3 parts: body,
comp_iter, and ifs. This is shown below.

[i*2 for i in range(10) if i>2] => [BODY for i in COMP_ITER if IFS]

Each of these 3 parts may be tested individually using the simple test functions. For example, in order to test the body
of the comprehension above, we could create the following exercise.

*** =solution
```{python}
L2 = [i**2 for i in range(0,10) if i>2]
```

*** =sct
```{python}
(Ex().check_list_comp(0) # focus on first list comp

.check_body().test_student_typed('i\*2') # focus on its body for test
)

```

In the SCT, check_list_comp gets the first comprehension, and will fail with feedback if no comprehensions were
used in th submission code. check_body gets i**2 in the solution code, and whatever corresponds to BODY in
the submission code.

(Note: the parentheses around the entire statement are just syntactic sugar, to let us chain commands in python without
using \ at the end of each line.)

Full Example

This section expands the above example to run tests on each part: body, iter, and ifs.

*** =solution
```{python}
L2 = [i*2 for i in range(0,10) if i>2]
```

*** =sct
```{python}

1.4. Part Checks 13



Pythonwhat Documentation, Release 1.2.0

list_comp = Ex().check_list_comp(0, missing_msg="Did you include a list comprehension?
→˓")
list_comp.check_body().test_student_typed('i\*2')
list_comp.check_iter().has_equal_value()
list_comp.check_ifs(0).multi([has_equal_value(context_vals=[i]) for i in range(0,10)])
```

In this SCT, the first line focuses on the first list comprehension, and assigns it to list_comp, so we can test each
part in turn. As a reminder, the code corresponding to each part in the solution code is..

• BODY: i**2

• COMP_ITER: range(0,10)

• IFS: [i>2]

Note that IFS is represented as a list, and the index 1 was passed to check_ifs because a list comprehension may have
multiple if statements. Since the test on BODY, is explained in the [In Brief section](#In_Brief), we will focus on the
tests on ITER and and IFS.

check_iter

In the line list_comp.check_iter().equal_value(), check_iter gets the ITER part in the solution
and submission code, while has_equal_value tells pythonwhat to run those parts and see if they return equal
values. Below are example solution and submission codes, with the ITER part they would produce

type code ITER part
solution [i*2 for i in range(0,10) if i>2] range(0,10)
submission [i*2 for i in range(10) if i>2] range(10)

In this case, equal_value will run each part, and then confirm that range(0,10) == range(10). For more
on functions that run code, like has_equal_value see [Expressions Tests](processes).

check_ifs

The line

list_comp.check_ifs(0).multi([has_equal_value(context_vals=[i] for i in range(0,10))])

is a doozy, but can be broken down into

equal_tests = [has_equal_value(context_vals=[i] for i in range(0,10))] #
→˓collection of has_equal_tests
list_comp.check_ifs(0).multi(equal_tests) # focus on
→˓IFS run equal_tests`

In this case equal_tests is a list of has_equal_value tests that we’ll want to perform. check_ifs(1)
grabs the first IFS part, and multi(equal_tests) runs each has_equal_value test on that part.

Notice that has_equal_value was given a context_val argument. This is because the list comprehension creates a
temporary variable that needs to be defined when we run the IFS code.

type code IFS part context value
solution [i*2 for i in range(0,10) if i>2] if i>2 i
submission [j*2 for j in range(0,10) if j>2] if j>2 j

14 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

In this case, the context_vals argument is a list of values, with one for each (in this case only a single) context value.
In this way, has_equal_value assigns i and j to the same value, before running the IFs part. By creating a list of
has_equal_tests with context vals spanning range(0,10), we test the IFS across a range of values.

Nested Part Example

Check functions may be combined to focus on parts within parts, such as

*** =solution
```{python}
[i*2 if i> 5 else 0 for i in range(0,10)]
```

In this case, a representation with the parts in caps and wrapping the inline if expression with {BODY=...} is

[{BODY=BODY if TEST else ORELSE} for i in ITER]

in order to test running the inline if expression we could go from list_comp => body => if_exp. One possible SCT is
shown below.

*** =sct
```{python}
(Ex().check_list_comp(0) # first comprehension

.check_body().set_context(i=6) # comp's body

.check_if_exp(0).has_equal_value() # body's inline IFS
)

```

Note that rather than using the context_vals argument of has_equal_value we use set_context to define
the context variable (i in the solution code) on the body of the list comprehension. This makes it very clear when the
context value was introduced. It is worth pointing out that of the parts a list comprehension has, BODY and IFS, but
not ITER have i as a context value. This is because in python i is undefined in the ITER part. Context values are
listed in the [see cheatsheet below].

Testing only the body of the list comprehension

If we left out the check_if_exp above, the resulting SCT,

(Ex().check_list_comp(0).check_body().set_context(i=6)
#.check_if_exp(1)
.has_equal_value()
)

would still run the same code for the solution (the inline if expression), since it’s the only thing in the BODY of the list
comprehension. However it wouldn’t check if an if expression was used, allowing a wider range of passing and failing
submissions (for better or worse!). Moreover, has_equal_value may be used multiple times during the chaining, as it
doesn’t change what the focus is.

Helper Functions

multi

multi(*args, state=None)
Run multiple subtests. Return original state (for chaining).

1.4. Part Checks 15

Pythonwhat Documentation, Release 1.2.0

Comma separated arguments

For example, this code without multi,

Ex().check_if_exp(0).check_body().has_equal_value()
Ex().check_if_exp(0).check_test().has_equal_value()

is equivalent to

Ex().check_if_exp(0).multi(
check_body().has_equal_value(),
check_test().has_equal_value()
)

List or generator of subtests

Rather than one or more subtest args, multi can take a single list or generator of subtests. For example, the code below
checks that the body of a list comprehension has equal value for 10 possible values of the iterator variable, i.

Ex().check_list_comp(0)
.check_body()
.multi(set_context(i=x).has_equal_value() for x in range(10))

Chaining off multi

Multi returns the same state, or focus, it was given, so whatever comes after multi will run the same as if multi wasn’t
used. For example, the code below tests a list comprehension’s body, followed by its iterator.

Ex().check_list_comp(0) \
.multi(check_body().has_equal_value()) \
.check_iter().has_equal_value()

has_context

has_context(incorrect_msg=None, exact_names=False, state=None)

Tests whether context variables defined by the student match the solution, for a selected block of code. A context
variable is one that is defined in a looping or block statement. For example, ii in the code below.

[ii + 1 for ii in range(3)]

By default, the test fails if the submission code does not have the same number of context variables. This is illustrated
below.

Solution Code

ii and ltr are context variables
for ii, ltr in enumerate(['a']): pass

SCT

Ex().check_for_loop(0).check_body().has_context()

16 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

Passing Submission

still 2 variables, just different names
for jj, Ltr in enumerate(['a']): pass

Failing Submission

only 1 variable
for ii in enumerate(['a']): pass

Note: that if you use has_context(exact_names = True), then the submission must use the same names
for the context variables, which would cause the passing submission above to fail.

set_context

set_context(*args, state=None, **kwargs)
Update context values for student and solution environments.

Note that excess args and unmatched kwargs will be unused in the student environment. If an argument is
specified both by name and position args, will use named arg.

Sets the value of a temporary variable, such as ii in the list comprehension below.

[ii + 1 for ii in range(3)]

Variable names may be specified using positional or keyword arguments.

Example

Solution Code

ltrs = ['a', 'b']
for ii, ltr in enumerate(ltrs):

print(ii)

SCT

Ex().check_for_loop(0).check_body() \
.set_context(ii=0, ltr='a').has_equal_output() \
.set_context(ii=1, ltr='b').has_equal_output()

Note that if a student replaced ii with jj in their submission, set_context would still work. It uses the solution code as
a reference. While we specified the target variables ii and ltr by name in the SCT above, they may also be given
by position..

Ex().check_for_loop(0).check_body().set_context(0, 'a').has_equal_output()

Instructor Errors

If you are unsure what variables can be set, it’s often easiest to take a guess. When you try to set context values that
don’t match any target variables in the solution code, set_context raises an exception that lists the ones available.

1.4. Part Checks 17

Pythonwhat Documentation, Release 1.2.0

with_context

with_context(*args, state=None)

Runs subtests after setting the context for a with statement.

This function takes arguments in the same form as multi. Note also that with_context was the default behavior
for test_with in pythonwhat version 1.

Context Managers Explained

With statements are special in python in that they enter objects called a context manager at the beginning of the block,
and exit them at the end. For example, the object returned by open('fname.txt') below is a context manager.

with open('fname.txt') as f:
print(f.read())

This code runs by

1. assigning f to the context manager returned by open('fname.txt')

2. calling f.__enter__()

3. running the block

4. calling f.__exit__()

with_context was designed to emulate this sequence of events, by setting up context values as in step (1), and
replacing step (3) with any sub-tests given as arguments.

fail

fail(msg=’‘, state=None)
Fail test with message

Fails. This function takes a single argument, msg, that is the feedback given to the student. Note that this would be a
terrible idea for grading submissions, but may be useful while writing SCTs. For example, failing a test will highlight
the code as if the previous test/check had failed.

As a trivial SCT example,

Ex().check_for_loop(0).check_body().fail() # fails boo

This can also be helpful for debugging SCTs, as it can be used to stop testing as a given point.

Check Functions

Arguments

• index: index or key corresponding to the node or part of interest. This applies to all functions in the check
column in the table below. However, apart from that, it only applies when there is more than one of a specific part
to choose from — check_ifs, check_args, check_handlers, and check_context. (e.g. Ex().
check_list_comp(0).check_ifs(0))

• missing_msg: optional feedback message if node or part doesn’t exist.

18 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

Note that code in all caps indicates the name of a piece of code that may be inspected using, check_{part}, where
{part} is replaced by the name in caps (e.g. check_if_else(0).check_test()). Target variables are those
that may be set using set_context. These variables may only be set in places where python would set them. For
example, this means that a list comprehension’s ITER part has no target variables, but its BODY does.

1.4. Part Checks 19

Pythonwhat Documentation, Release 1.2.0

check parts target variables
check_if_else(0)

if TEST:
BODY

else:
ORELSE

check_while(0)
while TEST:

BODY
else:

ORELSE

check_list_comp(0)
[BODY for i in ITER if
→˓IFS[0] if IFS[1]]

i

check_generator_exp(0)
(BODY for i in ITER if
→˓IFS[0] if IFS[1])

i

check_dict_comp(0)
{KEY : VALUE for k, v in
→˓ITER if IFS[0]}

k, v

check_for_loop(0)
for i in ITER:

BODY
else:

ORELSE

i

check_try_except(0)
try:

BODY
except BaseException as e:

HANDLERS[
→˓'BaseException']
except:

HANDLERS['all']
else:

ORELSE
finally:

FINALBODY

e

check_with(0)
with CONTEXT[0] as f1,
→˓CONTEXT[1] as f2:

BODY

f

check_function_def(‘f’)
def f(ARGS[0], ARGS[1]):

BODY

argument names

check_lambda(0)
lambda ARGS[0], ARGS[1]:
→˓BODY

argument names

check_function(‘f’, 0)
f(ARGS[0], ARGS[1])

argument names

20 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

More

elif statements

In python, when an if-else statement has an elif clause, it is held in the ORELSE part,

if TEST:
BODY

ORELSE # elif and else portion

In this sense, an if-elif-else statement is represented by python as nested if-elses. For example, the final else below

if x: print(x) # line 1
elif y: print(y) # "" 2
else: print('none') # "" 3

can be checked with the following SCT

(Ex().check_if_else(0) # lines 1-3
.check_orelse().check_if_else(0) # lines 2-3
.check_orelse().has_equal_output() # line 3
)

function definition / lambda args

the ARGS part in function definitions and lambdas may be selected by position or keyword. For example, the argu-
ments a and b below,

def f(a, b=2, *some_name):
BODY

Could be tested using,

Ex().check_function_def('f').multi(
check_args('a').is_default(),
check_args('b').is_default().has_equal_value(),
check_args('*args', 'missing a starred argument!')
)

Note that check_args('*args') and check_args('**kwargs') may be used to test *args, and **kwargs
style parameters, regardless of their name in the function definition.

function call args

Behind the scenes, check_function uses the same logic for matching arguments to function signatures as
test_function_v2. It also has a signature argument that accepts a custom signature.

Matching Signatures

By default, check_function tries to match each argument in the function call with the appropriate parameters in
that function’s call signature. For example, all the calls to f below use a = 1 and b = 2.

1.4. Part Checks 21

Pythonwhat Documentation, Release 1.2.0

def f(a, b): pass

f(1, 2) # by position
f(a = 1, b = 2) # by keyword
f(1, b = 2) # mixed

However, when testing a submission, we may not care how the argument was specified.

*** =pre_exercise_code
```{python}
def f(a, b): pass
```

*** =solution
```{python}
f(1, b=2)
```

*** =sct
```{python}
Ex().check_function('f', 0).check_args('a').has_equal_value()
```

will pass for all the ways of calling f listed above.

signature = False

Setting signature to false, as below, only allows you to check an argument by name, if the name was explicitly specified
in the function call. For example,

*** =solution
```{python}
dict( [('a', 1)], c = 2)
```

*** =sct
```{python}
Ex().check_function('dict', 0, signature=False)\

.multi(
check_args(0), # can only select by position
check_args('c') # could use check_args(1)
)

```

Note that here, an argument’s position is referring to its position in the function call (not its signature).

Example: testing a list passed as an argument

Suppose you want to test the first argument passed to sum. Below, we show how this can be down, using
has_equal_ast() to check that the abstract syntax trees for the 1st argument match.

*** =solution
```{python}
sum([1, 2, 3])
```

22 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

*** =sct
```{python}
(Ex().check_function('sum', 0)

.check_args(0)

.has_equal_ast("ast fail") # compares abstract
→˓representations

.test_student_typed("\[1, 2, 3\]", "typed fail") # alternative, more rigid test
)

```

Notice that testing the argument is similar to testing, say, the body of an if statement. In this sense, we could even do
deeper checks into an argument. Below, the SCT verifies that the first argument passed to sum is a list comprehension.

*** =solution
```{python}
sum([i for i in range(10)])
```

*** =sct
```{python}
(Ex().check_function('sum', 0)

.check_args(0)

.check_list_comp(0)

.has_equal_ast()
)

```

Expressions

Expression tests run pieces of the student and solution code, and then check the resulting value, printed output, or
errors they produce.

has_equal Syntax

Once student/submission code has been selected using a check test, we can run it using one of three functions. They
all take the same arguments, and run the student and submission code in the same way. However, they differ in how
they compare the outcome:

• has_equal_value - compares the value returned by the code.

• has_equal_output - compares printed output.

• has_equal_error - compares any errors raised.

has_expr(incorrect_msg=’FMT:Unexpected expression {test}: expected ‘{sol_eval}‘, got ‘{stu_eval}‘ with
values{extra_env}.’, error_msg=’Running an expression in the student process caused an is-
sue.’, undefined_msg=’FMT:Have you defined ‘{name}‘ without errors?’, extra_env=None, con-
text_vals=None, expr_code=None, pre_code=None, keep_objs_in_env=None, name=None, high-
light=None, state=None, test=None)

Run student and solution code, compare returned value, printed output, or errors.

Parameters

1.5. Expressions 23

Pythonwhat Documentation, Release 1.2.0

• incorrect_msg (str) – feedback message if the output of the expression in the solution
doesn’t match the one of the student. This feedback message will be expanded if it is used
in the context of another test function, like test_if_else.

• error_msg (str) – feedback message if there was an error when running the student
code. Note that when testing for an error, this message is displayed when none is raised.

• undefined_msg (str) – feedback message if the name argument is defined, but a vari-
able with that name doesn’t exist after running the student code.

• extra_env (dict) – set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active
state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables.

• context_vals (list) – set variables which are bound in a for loop to certain values.
This argument is only useful if you use the function in a test_for_loop. It contains a list with
the values of the bound variables.

• expr_code (str) – if this variable is not None, the expression in the student/solution
code will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared.

• pre_code (str) – the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

• keep_obj_in_env (list()) – a list of variable names that should be hold in the copied
environment where the expression is evaluated. All primitive types are copied automatically,
other objects have to be passed explicitely.

• name (str) – the name of a variable, or expression, whose value will be tested after running
the student and solution code. This could be thought of as post code.

Basic Usage

Running the whole code submission

In the example below, we re-run the entire student and submission code, and check that they print out the same output.

*** =solution
```{python}
x = [1,2,3]
print(x)
```

*** =sct
```{python}
# run all code and compare output
Ex().has_equal_output()
# equivalent to
# Ex().test_output_contains('[1,2,3]')
```

Note that while we could have used test_output_contains to verify that the student printed "[1, 2, 3]",
using has_equal_output simply requires that the student output matches the solution output.

24 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

Running part of the code

Combining an expression test with part checks will run only a piece of the submitted code. The example below first
uses has_equal_value to run an entire if expression, and then to run only its body.

*** =solution
```{python}
x = [1,2,3]
sum(x) if x else None
```

*** =sct
```{python}
# test body of if expression
(Ex().check_if_exp(0) # focus on if expression

.has_equal_value() # run entire if expression, check value

.check_body() # focus on body "sum(x)"

.has_equal_value() # run body, check value
)

```

Note that commands chaining off of has_equal_value behave as they would have if has_equal_value
weren’t used. In this sense, the check_body behaves the same in

Ex().check_if_exp(0).has_equal_value().check_body()

and

Ex().check_if_exp(0).check_body()

in that it gets “sum(x)” in the solution code (and its corresponding code in the submission).

Context Values

Suppose we want the student to define a function, that loops over the elements in a dictionary, and prints out each key
and value, as follows:

*** =solution
```{python}
def print_dict(my_dict):

for key, value in my_dict.items():
print(key + " - " + str(value))

```

An appropriate SCT for this exercise could be the following (for clarity, we’re not using any default messages):

*** =sct
```{python}
# get for loop code, set context for my_dict argument
for_loop = (Ex()

.check_function_def('print_dict') # ensure 'print_dict' is defined

.check_body() # get student/solution code in body

.set_context(my_dict = {'a': 2, 'b': 3}) # set print_dict's my_dict arg

.check_for_loop(0) # ensure for loop is defined
)

# test for loop iterator

1.5. Expressions 25



Pythonwhat Documentation, Release 1.2.0

for_loop.check_iter().has_equal_value() # run iterator (my_dict.items())
# test for loop body
for_loop.check_body().set_context(key = 'c', value = 3).has_equal_value()

```

Assuming the student coded the function in the exact same way as the solution, the following things happen:

• checks whether print_dict is defined, then gets the code for the function definition body.

• because print_dict takes an argument my_dict, which would be undefined if we ran the body code,
set_context defines what my_dict should be when running the code. Note that its okay if the submitted
code named the argument my_dict something else, since set_context matches submission / solution arguments
up by position.

When running the bottom two SCTs for the for_loop

• for_loop.check_iter().has_equal_value() - runs the code for the iterator, my_dict.
items() in the solution and its corresponding code in the submission, and compares the values they return.

• for_loop.check_body().set_context(key = 'c', value = 3).has_equal_value() -
runs the code in the for loop body, print(key + " - " + str(value)) in the solution, and compares
outputs. Since this code may use variables the for loop defined, key and value, we need to define them using
set_context.

How are Context Values Matched?

Context values are matched by position. For example, the submission and solution codes...

*** =solution

for ii, x in enumerate(range(3)): print(ii)

*** =submission

for jj, y in enumerate(range(3)): print(jj)

Using Ex().check_for_loop(0).check_body().set_context(...) will do the following...

statement solution (ii, x) submission (jj, y)
set_context(ii=1, x=2) ii = 1, x = 2 jj = 1, y = 2
set_context(ii=1) ii = 1, x is undefined jj = 1, y is undefined
set_context(x=2) ii is undefined, x = 2 jj is undefined, y = 2

Note: If ::set_context:: does not define a variable, nothing is done with it. This means that in the code examples
above, running the body of the for loop would call print with ::ii:: or ::jj:: left at 2 (the values they have in the
solution/submission environments).

pre_code: fixing mutations

Python code commonly mutates, or changes values within an object. For example, the variable x points to an object
that is mutated every time a function is called.

x = {'a': 1}

def f(d): d['a'] += 1

26 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

f(x) # x['a'] == 2 now
f(x) # x['a'] == 3 now

In this case, when f is run, it changes the contents of x as a side-effect and returns None. When using SCTs that
run expressions, mutations in either the solution or submission environment can cause very confusing results. For
example, calling np.random.random() will advance numpy’s random number generator. In the code below the
random seed is set to 42, but the solution code advances the random generator further than the submission code. As a
result the SCT will fail.

*** =pre_exercise_code
```{python}
import numpy as np
np.random.seed(42) # set random generator seed to 42
```

*** =solution
```{python}
if True: np.random.random() # 1st random call: .37

np.random.random() # 2nd random call: .95
```

*** =submission
```{python}
if True: np.random.random() # 1st random call: .37

# forgot 2nd call to np.random.random()
```

*** =sct
```{python}
# Should pass but fails, because random generator has advanced
# twice in solution, but only once in submission
Ex().check_if_else(0).check_body().has_equal_value()
```

In order to test random code, the random generator needs to be at the same state between submission and solution
environments. Since their generators can be thrown out of sync, the most reliable way to do this is to set the seed using
the pre_code argument to has_equal_value. In the case above, the sct may be fixed as follows

*** =sct

Ex().check_if_else(0).check_body().has_equal_value(pre_code = "np.random.seed(42)")

More generally, it can be helpful to define a pre_code variable to use before expression tests...

*** =sct

pre_code = """
np.random.seed(42)
"""

Ex().has_equal_output(pre_code=pre_code)
Ex().check_if_else(0).check_body().has_equal_value(pre_code = pre_code)

1.5. Expressions 27

Pythonwhat Documentation, Release 1.2.0

extra_env: fixing slow SCTs

The extra_env argument is similar to pre_code, in that you can (re)define objects in the student and submission
environment before running an expression. The difference is that, rather than passing a string that is executed in each
environment, extra_env lets you pass objects directly. For example, the two SCTs below are equivalent...

*** =sct

Ex().has_equal_value(pre_code="x = 10")
Ex().has_equal_value(extra_env = {'x': 10})

In practice they can often be used interchangably. However, one area where extra_env may shine is in mocking up
data objects before running tests. For example, if the SCT below didn’t use extra_env, then it would take a long time
to run.

*** =pre_exercise_code

a_list = list(range(10000000))

*** =solution

print(a_list[1])

*** =sct

extra_env = {'a_list': list(range(10))}
Ex().has_equal_output(extra_env = extra_env)

The reason extra_env is important here, is that pythonwhat tries to make a deepcopy of lists, so that course developers
don’t get bit by unexpected mutations. However, the larger the list, the longer it takes to make a deepcopy. If an SCT
is running slowly, there’s a good chance it uses a very large object that is being copied for every expression test.

name: run tests after expression

expr_code: change expression

The expr_code argument takes a string, and uses it to replace the code that would be run by an expression test. For
example, the following SCT simply runs len(x) in the solution and student environments.

*** =solution
```{python}
# keep x the same length
x = [1,2,3]
```

*** =SCT
```{python}
Ex().has_equal_value(expr_code="len(x)")
```

Note: Using expr_code does not change how expression tests perform highlighting. This means that
Ex().for_loop(0).has_equal_value(expr_code=”x[0]”) would highlight the body of the checked for loop.

28 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

call Syntax

Testing a function definition or lambda may require calling it with some arguments. In order to do this, use the
call() SCT. There are two ways to tell it what arguments to pass to the function/lambda,

• call("f (1, 2, x = 3)") - as a string, where "f" gets substituted with the function’s name.

• call([1,2,3]) - as a list of positional arguments.

Below, two alternative ways of specifying the arguments to pass are shown.

*** =solution
```{python}
def my_fun(x, y = 4, z = ('a', 'b'), *args, **kwargs):

return [x, y, *z, *args]
```

*** =sct
```{python}
Ex().check_function_def('my_fun').call("f(1, 2, (3,4), 5, kw_arg='ok')") # as string
Ex().check_function_def('my_fun').call([1, 2, (3,4), 5]) # as list
```

Note: Technically, you can get crazy and replace the list approach with a dictionary of the form {'args':
[POSARG1, POSARG2], 'kwargs': {KWARGS}}.

Additional Parameters

In addition to its first argument, call() accepts all the parameters that the expression tests above can (i.e.
has_equal_value, has_equal_error, has_equal_output). The function call is run at the point where
these functions would evaluate an expression. Moreover, setting the argument test to either “value”, “output”, or
“error” controls which expression test it behaves like.

For example, the SCT below shows how to run some pre_code, and then evaluate the output of a call.

Ex().check_function_def('my_fun').call("f(1, 2)", test="output", pre_code="x = 1")

Managing Processes

As mentioned on the Homepage, DataCamp uses two separate processes. One process to run the solution code, and
one process to run the student’s submission. This way, pythonwhat has access to the ‘ideal ending scenario’ of an
exercises; this makes it easier to write SCTs. Instead of having to specify which value an object should be, we can
have test_object() look into the solution process and compare the object in that process with the object in the
student process.

Problem

Fetching Python objects or the results of running expressions inside a process is not straightforward. To be able
to pull data from a process, Python needs to ‘pickle’ and ‘unpickle’ files: it converts the Python objects to a byte
representation (pickling) that can be passed between processes, and then, inside the process that you want to work
with the object, builds up the object from the byte representation again (unpickling).

1.5. Expressions 29

Pythonwhat Documentation, Release 1.2.0

For the majority of Python objects, this conversion to and from a byte representation works fine, but for some objects, it
doesn’t. Even dill, and improved implementation of pickle that’s being used in pythonwhat, doesn’t flawlessly
convert all Python objects out there.

If you’re writing an SCT with functions that require work in the solution process, such as test_object(),
test_function(), and test_function_definition(), and then upload the exercise and test it on Data-
Camp, that you get backend errors that look like this:

... dilling inside process failed - write manual converter

... undilling of bytestream failed - write manual converter

The first error tells you that ‘dilling’ - or ‘pickling’, converting the object to a bytestream representation, failed. The
second error tells you that ‘undilling’ - or ‘unpickling’, converting the byte representation back to a Python object,
failed. These errors will typically occur if you’re dealing with exotic objects, such as objects that interface to files,
connections to databases, etc.

Solution

To be able to handle these errors, pythonwhat allows you to write your own converters for Python objects. Say,
for example, that you’re writing an exercise to import Excel data into Python, and you’re using the pandas package.
This is the solution and the corresponding SCT:

*** =solution
```{python}
import pandas as pd
xl = pd.ExcelFile('battledeath.xlsx')
```

*** =sct
```{python}
Ex().test_object('xl')
```

Suppose now that objects such as xl, which are of the type pandas.io.excel.ExcelFile, can’t be properly
dilled and undilled. (Note: because of hardcoded converters inside pythonwhat, they can, see below). To make
sure that you can still use test_object('xl') to test the equality of the xl object between student and solution
process, you can manually define a converter with the set_converter() function. You can extend the SCT as
follows:

*** =sct
```
def my_converter(x):

return(x.sheet_names)
set_converter(key = "pandas.io.excel.ExcelFile", fundef = my_converter)
Ex().test_object('xl')
```

With a lambda function, it’s even easier:

*** =sct
```
set_converter(key = "pandas.io.excel.ExcelFile", fundef = lambda x: x.sheet_names)
Ex().test_object('xl')
```

The first arguemnt of set_converter(), the key takes the type of the object you want to add a manual converter
for as a string. The second argument, fundef, takes a function definition, taking one argument and returning a

30 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

single object. This function definition converts the exotic object into something more standard. In this case, the
function converts the object of type pandas.io.excel.ExcelFile into a simple list of strings. A list of strings
is something that can easily be converted into a bytestream and back into a Python object again, hence solving the
problem.

If you want to reuse the same manual converter over different exercises, you’ll have to use set_converter() in
every SCT.

Hardcoded converters

Some converters will be required often. For example, the result of calling .keys() and .items() on dictionaries
can’t be dilled and undilled without extra work. To handle these common yet problematic situations, pythonwhat
features a list of hardcoded converters. This list is available in the source code; feel free to do a pull request if you
want to add more converts to this list. This will reduce the amount of code duplication you have to do if you want to
reuse the same converter in different exercises.

Custom Equality

The set_converter() function opens up possibilities for objects that can actually be dilled and undilled perfectly
fine. Say you want to test a numpy array, but you only want to check only if the dimensions of the array the student
codes up match those in the solution process. You can easily write a manual converter that overrides the typical dilling
and undilling of Numpy arrays, implementing your custom equality behavior:

*** =solution
```{python}
import numpy as np
my_array = np.array([[1,2], [3,4], [5,6]])
```

*** =sct
```
set_converter(key = "numpy.ndarray", fundef = lambda x: x.shape)
Ex().test_object('my_array')
```

Both of the following submissions will be accepted by this SCT:

• my_array = np.array([[1,2], [3,4], [5,6]])

• my_array = np.array([[0,0], [0,0], [5,6]])

Logic Tests

test_correct

test_correct(check, diagnose, state=None)
Allows feedback from a diagnostic SCT, only if a check SCT fails.

A wrapper function around test_or(), test_correct() allows you to add logic to your SCT. Normally, your
SCT is simply a script with subsequent pythonwhat function calls, all of which have to pass. test_correct()
allows you to bypass this: you can specify a “sub-SCT” in the check part, that should pass. If these tests pass, the
“sub-SCT” in diagnose is not executed. If the tests don’t pass, the “sub-SCT” in diagnose is run, typically to
dive deeper into what the error might be and give more specific feedback.

1.6. Logic Tests 31

https://github.com/datacamp/pythonwhat/blob/master/pythonwhat/converters.py

Pythonwhat Documentation, Release 1.2.0

To accomplish this, the SCT in check is executed silently, so that failure will not cause the SCT to stop and generate a
feedback message. If the execution passes, all is good and test_correct() is abandoned. If it fails, diagnose is
executed, not silently. If the diagnose part fails, the feedback message that it generates is presented to the student.
If it passes, the check part is executed again, this time not silently, to make sure that a test_correct() that
contains a failing check part leads to a failing SCT.

Example 1

As an example, suppose you want the student to calculate the mean of a Numpy array arr and store it in res. A
possible solution could be:

*** =solution
```{python}
# Import numpy and create array
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])

# Calculate result
result = np.mean(arr)
```

You want the SCT to pass when the student manages to store the correct value in the object result. How result
was calculated, does not matter to you: as long as result is correct, the SCT should accept the submission. If
something about result is not correct, you want to dig a little deeper and see if the student used the np.mean()
function correctly. The following SCT will do just that:

*** =sct
```{python}
test_correct(test_object('result'),

test_function('numpy.mean'))
success_msg("You own numpy!")
```

Let’s go over what happens when the student submits different pieces of code:

• The student submits result = np.mean(arr), exactly the same as the solution. test_correct()
runs test_object('result'). This test passes, so test_correct() stops. The SCT passes.

• The student submits result = np.sum(arr) / arr.size, which also leads to the correct value in
result. test_correct() runs test_object('result'). This test passes, so test_correct()
stops before running test_function(). The entire SCT passes even though np.mean() was not used.

• The student submits result = np.mean(arr + 1). test_correct() runs
test_object('result'). This test fails, so test_correct() continues with ‘diagnose’, running
test_function('numpy.mean'). This function fails, since the argument passed to numpy.mean()
in the student submission does not correspond to the argument passed in the solution. A meaningful, specific
feedback message is presented to the student: you did not correctly specify the arguments inside np.mean().

• The student submits result = np.mean(arr) + 1. test_correct() runs
test_object('result'). This test fails, so test_correct() continues with’diagnose’, run-
ning test_function('numpy.mean'). This function passes, becausenp.mean()is
called in exactly the same way in the student code as in the solution.
Because there is something wrong -resultis not correct - the 'check' SCT,
test_object(‘result’)is executed again, and this time its feedback on failure is
presented to the student. The student gets the message thatresult‘ does not
contain the correct value.

32 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

Multiple functions in diagnose and check

You can also use test_correct() with entire ‘sub-SCTs’ that are composed of several SCT calls. In this case,
you may put multiple tests inside multi(), as below..

*** =sct
```{python}
Ex().test_correct(

multi(test_object('a'), test_object('b')), # multiple check SCTs
test_function('numpy.mean')
)

```

Why to use test_correct()

You will find that test_correct() is an extremely powerful function to allow for different ways of solving the
same problem. You can use test_correct() to check the end result of a calculation. If the end result is correct,
you can go ahead and accept the entire exercise. If the end result is incorrect, you can use the diagnose part of
test_correct() to dig a little deeper.

It is also perfectly possible to use test_correct() inside another test_correct().

Wrapper around test_or()

test_correct() is a wrapper around test_or(). test_correct(diagnose, check) is equivalent
with:

def diagnose_and_check()
diagnose()
check()

test_or(diagnose_and_check, check)

Note that in each of the test_or cases here, the submission has to pass the SCTs specified in check.

test_or

test_or(*tests, state=None)
Test whether at least one SCT passes.

This function simply tests whether one of the SCTs you specify inside it passes.

Suppose you want to check whether people correctly printed out any integer between 3 and 7. A solution could be:

*** =solution
```{python}
print(4)
```

To test this in a robust way, you could use test_output_contains() with a suitable regular expression that
covers everything, or you can use test_or() with three separate test_output_contains() functions.

*** =sct
```{python}
test_or(test_output_contains('4'),

1.6. Logic Tests 33



Pythonwhat Documentation, Release 1.2.0

test_output_contains('5'),
test_output_contains('6'))

success_msg("Nice job!")
```

You can consider test_or() a logic-inducing function. The different calls to pythonwhat functions that are in
your SCT are actually all tests that have to pass: they are AND tests. With test_or() you can add chunks of OR
tests in there.

Spec2 Changes

Lambdaless test functions

Sometimes you want to pass a test function as an argument to another test function. For the examples below, we’ll use
the following solution code

solution code
[1 if True else 0 for i in range(10)]

Removing Lambdas

Using an SCT that works in pythonwhat v2,

pythonwhat v2 SCT
test_list_comp(

body=test_if_exp(
body=test_student_typed('1')) # line 4

would do the following (in order)...

1. run the test_student_typed function on line 4, which runs over the whole code, rather than just the body of the
inline if.

2. pass its return value (None) to the body argument of test_if_exp.

3. run test_if_exp, whose body argument is None, rather than a sub-test.

4. run test_list_comp, whose body argument is None, rather than a sub-test.

Instead, in pythonwhat v1, testing the inline if expression (1 if True else 0) requires an SCT peppered with lambdas,
such as

v1 SCT
test_list_comp(

body=lambda: test_if_exp(
body = lambda: test_student_typed('1'))

Removing temporary functions for multiple sub-tests

In pythonwhat v2, multiple sub-tests may be run by putting them in a list, such as

34 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

v2 SCT
list of sub-tests
if_body_tests = [test_student_typed('1'), test_expression_result(context_vals=[1])]
main test
test_list_comp(

body = test_if_exp(
body = if_body_tests) # list could also be put here directly

which, in pythonwhat v1 would try to run the tests in if_body_tests first, rather than as sub-tests. In order to
accomplish this in pythonwhat v1, temporary functions were necessary, such as,

v1 SCT
temporary function for testing inline if expression
def inner_test():

test_student_typed('1')
test_expression_result(context_vals=[1])

main test
test_list_comp(

body=lambda: test_if_exp(body = inner_test))

while not too different, this approach can spiral out of control for complex SCTs (temporary functions within tempo-
rary functions, etc..).

How it works

spec SCT effect
v1 test test_list_comp() runs test
v1 test lambda: test_list_comp() waits to run
v2 check check_list_comp() waits to run
v2 check Ex().check_list_comp() runs test
v2 test F().test_list_comp() waits to run
v2 test test_list_comp() runs test if not argument to another

The critical message is in pythonwhat

• v1: you have to do something special (use a lambda) to opt-out of running a test immediately.

• v2: you have to do something special (use Ex()) to opt-in to running a test immediately.

pythonwhat v2 is Backwards Compatibile

for all test_ functions, pythonwhat v2’s behavior is completely backwards compatible (and in fact was put in python-
what v1 several weeks before releasing v2). If you want to be explicit about any test function not being run, you can
use the function chain object F, for example

Implicit
sub_test = test_if_exp(ETC...) # waits to run only if passed to another SCT
test_list_comp(body=sub_test) # comment out this line, and sub_test will
→˓run (as in pythonwhat v1)

Explicit
sub_test = F().test_if_exp(ETC...) # always waits to run
Ex().test_list_comp(body=sub_test)

1.7. Spec2 Changes 35

Pythonwhat Documentation, Release 1.2.0

Never mix Explicit and Implicit approaches

If you choose to use the explicit approach (Ex() and F()), don’t expect the implicit approach to work. That is, if
you want test_if_exp below to run immediately, do not write

test_if_exp(1) # implicit, should use Ex() or F()
Ex().check_list_comp(1) # explicit

and expect the SCTs to run in a predictable order.

If you want to create a bunch of sub-tests, but don’t want to preface each with F(), you can use the pythonwhat v2
function multi, as below.

subtest = multi(test_if_exp(ETC...), test_list_comp(ETC...))

Context values for nested parts

Context values may now be defined for nested parts. For example, the print statement below,

for i in range(2): # outer for loop part
for j in range(3): # inner for loop part

print(i + j)

may be tested by setting context values at each level,

(Ex()
.check_for_loop(0).check_body().set_context(i = 1) # outer for
.check_for_loop(0).check_body().set_context(j = 2) # inner for

.has_equal_output()
)

For more on context valus see [PROCESSES LINK HERE].

Can call code chunks that before could only be split up

Entire code pieces, such as the inline if statement below,

'yes' if True else 'no'

may be tested using something like,

Ex().check_if_exp(0).has_equal_value()

Argument checking

The arguments of a function definition, such as

def f(a=1): print(a)

are now parts and may be checked as below..

36 Chapter 1. Contents:

Pythonwhat Documentation, Release 1.2.0

(Ex().check_function_def('f') # does f exist?
.check_args('a') # does a exist?
.is_default() # is it a default argument?
.has_equal_value() # is it's default equal to solution?
)

For more on the argument part, see [PART CHEATSHEET LINK HERE].

Deprecate test_expression_result and friends

In pythonwhat v1, the functions

• test_expression_result

• test_expression_output

• test_object_after_expression

and various arguments of test_function_definition, test_lambda_function ran code and then checked the result, printed
output, or errors against eachother.

These functions have been deprecated in favor of similar function..

• has_equal_value

• has_equal_output

• has_equal_error

These functions include identical arguments as the above.

Feedback messages may use templating (via str.format or Jinja2)

This feature is not stable, and should not be used in production

Cleaned up internals

Yayyyy.

1.7. Spec2 Changes 37

Pythonwhat Documentation, Release 1.2.0

38 Chapter 1. Contents:

CHAPTER 2

Pythonwhat V1

Legacy Tests

The functions below combine both part checks and simple tests from pythonwhat v1. In some cases, they allow very
specific checks that are not yet exposed to SCT creators in v2 (such as whether iterator variables have the exact same
names).

test_data_frame

def test_data_frame(name,
columns=None,
undefined_msg=None,
not_data_frame_msg=None,
undefined_cols_msg=None,
incorrect_msg=None)

Test a pandas DataFrame. This methods makes it possible to test the columns of a DataFrame object independently.
Only the contents will be tested. Customisable error messages are possible for when there is no object in the process
with name name, for when that object is no pandas DataFrame, when there are columns you want to test for which
are not defined and when some columns contain bad values. columns contains a list of column names, and defaults
to None. If it’s None, all columns that are found in the data frame created by the solution will be tested.

Example 1

Suppose we have the following solution:

*** =solution
```{python}
# import pandas
import pandas as pd

39



Pythonwhat Documentation, Release 1.2.0

# Create dataframe with columns a and b
my_df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
```

To test this we simply use:

*** =sct
```{python}
test_import("pandas")
test_data_frame("my_df", columns = ["a", "b"])
success_msg("Great job!")
```

This SCT will first test if pandas is correctly imported, and will then check if the student created a Pandas
DataFrame called my_df. If it was not defined, a message is generated that you can override with undefined_msg.
If the object was defined but it isn’t a Pandas DataFrame, as message is generated that you can override wiht
not_data_frame_msg. If my_df is a Pandas DataFrame, test_data_frame() goes on to check if all
columns that are specified in the columns argument are defined in the data frame, and next whether these
columns are correct. The messages that are generated in case of an incorrect submission can be overrided with
undefined_cols_msg and incorrect_msg, respectively.

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

test_dictionary

test_dictionary(name, keys=None, undefined_msg=None, not_dictionary_msg=None,
key_missing_msg=None, incorrect_value_msg=None, state=None)

Test the contents of a dictionary.

def test_dictionary(name,
keys=None,
undefined_msg=None,
not_dictionary_msg=None,
key_missing_msg=None,
incorrect_value_msg=None)

Test a dictionary. Consider this function an advanced version of test_object, where you can specify messages that
are explicit to test dictionaries. test_dictionary takes a step-by-step approach to checking the correspondence
of the dictionary between student and solution process:

• Step 1: Is the object specified in name actually defined?

• Step 2: Is the object specified in name actually a dictionary?

• Step 3: For each key, is the key specified in the dictionary?

• Step 4: For each key, is the value corresponding to the key correct when comparing to the solution?

For Step 3 and Step 4, you can control which keys have to be tested through the keys argument. If you don’t
specify this argument, test_dictionary() will look for all keys and compare the values that are specified in the
corresponding dictionary in the solution process.

40 Chapter 2. Pythonwhat V1

https://github.com/datacamp/pythonwhat/blob/master/docs/source/expression_tests.rst

Pythonwhat Documentation, Release 1.2.0

Example: step by step

Suppose you want the student to create a dictionary x, that contains three keys: "a", "b" and "c". The following
solution and sct could be used for this:

*** =solution
```{python}
x = {'a': 123, 'b':456, 'c':789}
```

*** =sct
```{python}
test_dictionary('x')
```

• Step 1: if the student submits an empty script, the feedback Are you sure you defined the dictionary x? will be
presented. You can override this by specifying undefined_msg yourself.

• Step 2: if the student submits x = 123, the feedback x is not a dictionary. will be presented. You can override
this message by specifying not_dictionary_msg yourself.

• Step 3: if the student submits x = {'a':123, 'b':456, 'd':78}, the feedback Have you specified a
key c inside x? will be presented. You can override this by specifying key_missing_msg yourself.

• Step 4: if the student submits x = {'a':123, 'b':456, 'c':78}, the feedback Have you speci-
fied the correct value for the key c inside x? will be presented. You can override this by specifying
incorrect_value_msg yourself.

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

test_operator

THIS FUNCTION IS DEPRECATED AND WILL BE REMOVED IN A FUTURE RELEASE

test_operator(index=1, eq_condition=’equal’, used=None, do_eval=True, not_found_msg=None, incor-
rect_op_msg=None, incorrect_result_msg=None, state=None)

THIS FUNCTION IS DEPRECATED

Test if operator groups match.

This function compares an operator group in the student’s code with the corresponding one in the solution code.
It will cause the reporter to fail if the corresponding operators do not match. The fail message that is returned
will depend on the sort of fail. We say that one operator group correpsonds to a group of operators that is
evaluated to one value (e.g. 3 + 5 * (1/3)).

Parameters

• index (int) – Index of the operator group to be checked. Defaults to 1.

• eq_condition (str) – how results of operators are compared. Currently, only “equal”
is supported, meaning that the result in student and solution process should have exactly the
same value.

• used (List[str]) – A list of operators that have to be in the group. Valid operators are:
“+”, “-”, “*”, “/”, “%”, “**”, “<<”, “>>”, “|”, “^”, “&” and “//”. If the list is None, operators
that are in the group in the solution have to be in the student code. Defaults to None.

2.1. Legacy Tests 41

Pythonwhat Documentation, Release 1.2.0

• do_eval (bool) – Boolean representing whether the group should be evaluated and com-
pared or not. Defaults to True.

• not_found_msg (str) – Feedback message if not enough operators groups are found in
the student’s code.

• incorrect_op_msg (str) – Feedback message if the wrong operators are used in the
student’s code.

• incorrect_result_msg (str) – Feedback message if the operator group evaluates to
the wrong result in the student’s code.

Example Student code:

1 + 5 * (3+5)
1 + 1 * 238

Solution code:

3.1415 + 5
1 + 238

SCT:

test_operator(index = 2, used = ["+"]) # pass
test_operator(index = 2) # fail
test_operator(index = 1, incorrect_op_msg = "Use the correct operators
→˓") # fail
test_operator(index = 1, used = [], incorrect_result_msg = "Incorrect
→˓result") # fail

def test_operator(index=1,
eq_condition="equal",
used=None,
do_eval=True,
not_found_msg=None,
incorrect_op_msg=None,
incorrect_result_msg=None)

Suppose you want the student to do some very basic operations using the * and the ** operator. You could just ask
the student to do some calculations and assign the result to a variable, result for example, and check that variable
using test_object(). However this won’t allow you to give the student very tailored feedback. Suppose you want
to check if the student uses ** and tell him/her if he/she doesn’t! test_object() won’t allow you to check this
kind of specifics as it only checks resulting objects in both processes. Luckily, you can use another helper function,
test_operator().

Say you want the student to calculate the future value of $100 after 6 years. The interest rate 6% and you are using
compound interest. This means the result has to be 100 * 1.06 ** 6, so the solution code would be.

*** =solution
```{python}
# Calculate the future value of 100 dollar: result
result = 100 * 1.06 ** 6

# Print out the result
print(result)
```

The SCT might look something like this,

42 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

*** =sct
```{python}
test_operator(index=1)
test_object("result")
test_function("print")
success_msg("Great!")
```

You can learn about test_object() and test_function() in the other articles, so those won’t be deatiled
here. Let’s focus on test_operator() instead. This function will extract the first operator group from the solution
code (100 * 1.06 ** 6), run it in the solution process, and compare the result with the result from running the
first operator in the student code in the student process. In total, three steps will be tested:

• Did the student define enough operations?

• Does the student use the same operators as the solution?

• Is the result of the operation for the student the same as the one in the solution?

test_operator() takes some additional arguments for further customization and tailored feedback messages. For
example, you can use it as follows to just check whether the student used the ** operator in his/her first operation and
give custom feedback:

*** =sct
```{python}
test_operator(index=1, used=["**"], do_eval=False,

incorrect_op_msg="A little tip: you should use `**` to do this
→˓calculation.")
test_object("result")
test_function("print")
success_msg("Great!")
```

This SCT will be more forgiving, but the result is still checked with test_object() so the student will still have
to calculate the correct value. This time, however, it is not checked by test_operator() because do_eval =
False. used = ["**"] is used to tell the system to only check on the ** operator for the first operation group.

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

test_expression_output

test_expression_output(extra_env=None, context_vals=None, incorrect_msg=None,
eq_condition=’equal’, expr_code=None, pre_code=None,
keep_objs_in_env=None, state=None)

Test output of expression.

The code of the student is ran in the active state and the output it generates is compared with the code of the
solution. This can be used in nested pythonwhat calls like test_if_else. In these kind of calls, the code of the
active state is set to the code in a part of the sub statement (e.g. the body of an if statement). It has various
parameters to control the execution of the (sub)expression.

Parameters

• extra_env (dict) – set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active

2.1. Legacy Tests 43

Pythonwhat Documentation, Release 1.2.0

state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables.

• context_vals (list) – set variables which are bound in a for loop to certain values.
This argument is only useful if you use the function in a test_for_loop. It contains a list with
the values of the bound variables.

• incorrect_msg (str) – feedback message if the output of the expression in the solution
doesn’t match the one of the student. This feedback message will be expanded if it is used
in the context of another test function, like test_if_else.

• eq_condition (str) – how objects are compared. Currently, only “equal” is supported,
meaning that the result in student and solution process should have exactly the same value.

• expr_code (str) – if this variable is not None, the expression in the student/solution
code will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared.

• pre_code (str) – the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

• keep_obj_in_env (list()) – a list of variable names that should be hold in the copied
environment where the expression is evaluated. All primitive types are copied automatically,
other objects have to be passed explicitely.

Example Student code:

a = 12
if a > 3:

print('test %d' % a)

Soltuion code:

a = 4
if a > 3:

print('test %d' % a)

SCT:

test_if_else(1,
body = test_expression_output(

extra_env = { 'a': 5 },
incorrect_msg = "Print out the correct things"))

This SCT will set a to five, and run the body in both environments (print('test %d' %a)
in both cases). Since the they print the same output, the test will pass.

def test_expression_output(extra_env=None,
context_vals=None,
incorrect_msg=None,
eq_condition="equal",
expr_code=None,
pre_code=None,
keep_objs_in_env=None)

test_expression_output() is similar to test_expression_result(), but instead of checking the re-
sult, it checks the output that a single or a set of expressions generates. Typically, this function is used as a sub-test
inside other test functions, such as test_for_loop() and test_with().

44 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

By default, the test_expression_output() will execute the ‘active expression(s)’; if it’s used as a top-level
SCT function, that is the entire student submission. If it’s used inside the body of the test_for_loop() func-
tion, for example, the entire for loop’s body will executed and the output will be compared to the solution. With
expr_code, you can override this default expression tree. With pre_code, you can prepend the execution of the
default expression tree with some extra code, for example to set some variables.

Oftentimes, the expression you want to check the output for does not have all variables to its disposal that it requires.
Remember that the process in which the expression is evaluated only contains the variables that are available in the
global scope. If you’re for example running the body of a function definition, this means that the local variables,
that are for example passed into the function as arguments, are not all available during execution. To make these
variables available, you can set the extra_env and context_vals arguments. The former is to specify extra
variables, with a dictionary. The latter is to specify so called context values; the objects you specify here should not
be named; this is to make function definition arguments, iterators in for loops, context variables in with constructs,
etc, name-independent.

Example 1

Suppose we want the student to define a function, that loops over the elements in a dictionary, and prints out each key
and value, as follows:

*** =solution
```{python}
def print_dict(my_dict):

for key, value in my_dict.items():
print(key + " - " + str(value))

```

An appropriate SCT for this exercise could be the following (for clarity, we’re not using any default messages):

*** =sct
```{python}
def fun_body_test():

def for_iter_test():
example_dict = {'a': 2, 'b': 3}
test_expression_result(context_vals = [example_dict])

def for_body_test():
test_expression_output(context_vals = ['c', 3])

test_for_loop(for_iter = for_iter_test, body = for_body_test)

test_function_definition('print_dict', body = fun_body_test)
```

Assuming the student coded the function in the exact same way as the solution, the following things happen:

• test_function_definition() is run first: it checks whether print_dict is defined, whether the
arguments are correctly named and with the correct defaults. Next, it checks the function definition body:
it extracts the body of both the student and the solution code, sets the context values for this ‘substate’, i.e.
"my_dict", and then runs fun_body_test().

• Inside fun_body_test(), test_for_loop() is executed. This function will find the for loop in the
function definition body of both student and solution code, and will then run different tests:

– First, the for_iter test is run, which is specified with for_iter_test() in this SCT. The
for_iter part of the for loop is extracted, which is my_dict.items() in the case of the solution.
The context values are still "my_dict". Inside test_expression_result(), the context vals are
specified, so through context_vals = [example_dict], the variable my_dict will now have
the value {'a': 2, 'b':3} inside the student and solution processes. Next, the currently active

2.1. Legacy Tests 45

Pythonwhat Documentation, Release 1.2.0

expression (my_dict.items()) is executed. The result of calling this expression in both student and
solution process is compared.

– Second, the body test is run, which is specified iwth for_body_test() in this SCT. The body part
of the for loop is extracted, which is print(key + " - " + str(value)) in the case of the
solution. Now, the context values are set to the iterator variables of the for loop, so "key" and "value".
Inside test_expression_output(), the context vals are specified: key is set to be 'c', value
is set to be 3. Next, the currently active expression (print(key + " - " + str(value))) is
executed, and the output it generates is fetched. The output of calling this expression in both student and
solution process is compared.

Example 2

Suppose now that inside the for loop of print_dict() from the previous example, you each time want to print
out the length of the entire dictionary:

*** =solution
```{python}
def print_dict(my_dict):

for key, value in my_dict.items():
print("total length: " + str(len(my_dict)))
print(key + " - " + str(value))

```

The SCT from before won’t work out of the box, because now you also need a value for my_dict in-
side test_expression_output(), the test of the body of the for loop, but this value is not avail-
able. You cannot specify this value through context_vals, because the context variables are already up-
dated to be "key" and "value". To be able to test this appropriately, you’ll have to set extra_env inside
test_expression_output():

*** =sct
```{python}
def fun_body_test():

def for_iter_test():
example_dict = {'a': 2, 'b': 3}
test_expression_result(context_vals = [example_dict])

def for_body_test():
example_dict = {'a': 2, 'b': 3}
test_expression_output(context_vals = ['c', 3], extra_env = {'my_dict':

→˓example_dict})

test_for_loop(for_iter = for_iter_test, body = for_body_test)

test_function_definition('print_dict', body = fun_body_test)
```

With this update of the SCT, the exercise will still run fine.

test_expression_result

test_expression_result(extra_env=None, context_vals=None, incorrect_msg=None,
eq_condition=’equal’, expr_code=None, pre_code=None,
keep_objs_in_env=None, error_msg=None, state=None)

Test result of expression.

46 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

The code of the student is ran in the active state and the result of the evaluation is compared with the result of
the solution. This can be used in nested pythonwhat calls like test_if_else. In these kind of calls, the code of the
active state is set to the code in a part of the sub statement (e.g. the condition of an if statement). It has various
parameters to control the execution of the (sub)expression.

Parameters

• extra_env (dict) – set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active
state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables.

• context_vals (list) – set variables which are bound in a for loop to certain values.
This argument is only useful if you use the function in a test_for_loop. It contains a list with
the values of the bound variables.

• incorrect_msg (str) – feedback message if the result of the expression in the solution
doesn’t match the one of the student. This feedback message will be expanded if it is used
in the context of another test function, like test_if_else.

• eq_condition (str) – how results are compared. Currently, only “equal” is supported,
meaning that the result in student and solution process should have exactly the same value.

• expr_code (str) – if this variable is not None, the expression in the studeont/solution
code will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared.

• pre_code (str) – the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

• keep_obj_in_env (list()) – a list of variable names that should be hold in the copied
environment where the expression is evaluated. All primitive types are copied automatically,
other objects have to be passed explicitely.

• error_msg (str) – Message to override the default error message that is thrown if the
expression resulted in an error.

Example Student code:

a = 12
if a > 3:

print('test %d' % a)

Solution code:

a = 4
b = 5
if (a + 1) > (b - 1):

print('test %d' % a)

SCT:

test_if_else(1,
test = test_expression_result(

extra_env = { 'a': 3 }
incorrect_msg = "Test if `a` > 3"))

This SCT will pass as the condition in the student’s code (a > 3) will evaluate to the same
value as the code in the solution code ((a + 1) > (b - 1)), with value of a set to 3.

2.1. Legacy Tests 47

Pythonwhat Documentation, Release 1.2.0

def test_expression_result(extra_env=None,
context_vals=None,
incorrect_msg=None,
eq_condition="equal",
expr_code=None,
pre_code=None,
keep_objs_in_env=None,
error_msg=None)

test_expression_result() works pretty much the same as test_expression_output() and takes
the same arguments. However, in this case, the expression should be a single expression and can’t be a ‘tree
of expressions’, such as the entire body of a function definition for example. Currently, the only places where
test_expression_result() is used, is inside inherently ‘single expression parts’ of your code, such as the
sequence specification of a for loop, the expression of a lambda function, etc.

The example in the test_expression_output() article also explains the use of
test_expression_result().

test_object_after_expression

test_object_after_expression(name, extra_env=None, context_vals=None, undefined_msg=None,
incorrect_msg=None, eq_condition=’equal’, expr_code=None,
pre_code=None, keep_objs_in_env=None, state=None)

Test object after expression.

The code of the student is ran in the active state and the the value of the given object is compared with the value
of that object in the solution. This can be used in nested pythonwhat calls like test_for_loop. In these kind of
calls, the code of the active state is set to the code in a part of the sub statement (e.g. the body of a for loop). It
has various parameters to control the execution of the (sub)expression. This test function is ideal to check if a
value is updated correctly in the body of a for loop.

Parameters

• name (str) – the name of the object which value has to be checked after evaluation of the
expression.

• extra_env (dict) – set variables to the extra environment. They will update the student
and solution environment in the active state before the student/solution code in the active
state is ran. This argument should contain a dictionary with the keys the names of the
variables you want to set, and the values are the values of these variables.

• context_vals (list) – set variables which are bound in a for loop to certain
values. This argument is only useful if you use the function in a test_for_loop or
test_function_definition. It contains a list with the values of the bound variables.

• incorrect_msg (str) – feedback message if the value of the object in the solution
environment doesn’t match the one in the student environment. This feedback message will
be expanded if it is used in the context of another test function, like test_for_loop.

• eq_condition (str) – how objects are compared. Currently, only “equal” is supported,
meaning that the resulting objects in student and solution process should have exactly the
same value.

• expr_code (str) – if this variable is not None, the expression in the studeont/solution
code will not be ran. Instead, the given piece of code will be ran in the student as well as the
solution environment and the result will be compared.

48 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

• pre_code (str) – the code in string form that should be executed before the expression
is executed. This is the ideal place to set a random seed, for example.

• keep_obj_in_env (list()) – a list of variable names that should be hold in the copied
environment where the expression is evaluated. All primitive types are copied automatically,
other objects have to be passed explicitely.

Example Student code:

count = 1
for i in range(100):

count = count + i

Solution code:

count = 15
for n in range(30):

count = count + n

SCT:

test_for_loop(1,
body = test_object_after_expression("count",

extra_env = { 'count': 20 },
contex_vals = [10])

This SCT will pass as the value of count is updated identically in the body of the for loop in the
student code and solution code.

test_object_after_expression(name,
extra_env=None,
context_vals=None,
undefined_msg=None,
incorrect_msg=None,
eq_condition="equal",
pre_code=None,
keep_objs_in_env=None)

test_object_after_expression() is a function that is primarily used to check the correctness of the body
of control statements. Through extra_env and context_vals you can adapt the student/solution environment
with manual elements. Next, the ‘currently active expression tree’, such as the body of a for loop, is executed, and the
resulting environment is inspected. This is done for both the student and the solution code, and afterwards the value
of the object that you specify in name is checked for equality. With pre_code, you can prepend the execution of the
default expression tree with some extra code, for example to set some variables.

Example 1: Function defintion

Suppose you want to student to code up a function shout(), that adds three exclamation marks to every word you
pass it:

*** =solution
```{python}
def shout(word):

shout_word = word + '!!!'
return shout_word

```

2.1. Legacy Tests 49

Pythonwhat Documentation, Release 1.2.0

To test whether the student did this appropriately, you want to first test whether shout is a user-defined function, and
then whether inside the function, a new variable shout_word is created. Finally, you also want to check whether
the result of calling shout('hello') is correct. The following SCT will do that for us:

*** =sct
```{python}
test_function_definition('shout',

body = test_object_after_expression('shout_word', context_
→˓vals = ['anything']),

results = [('hello')])
```

Let’s focus on the body argument of test_function_definition() here, that
uses test_object_after_expression(). For the other elements, refer to the
test_function_definition() article.

The first argument of test_object_after_expression() tells the system to check the value of
shout_word after executing the body of the function definition. Which part of the code to execute, the ‘expres-
sion’, is implicitly specified by pythonwhat. However, to run correctly, this expression has to know what word is.
You can specify a value of word through the context_vals argument. It’s a simple list: the first element of the
list will be the value for the first argument of the function definition, the second element of the list will be the value
for the second argument of the list, and so on. Here, there’s only one argument, so a list with a single element, a string
(that will be the value of the word variable), suffises.

test_object_after_expression()will execute the expression, and run it on the solution side and the student
side. On the solution side, the value of shout_word after the execution will be 'anything!!!'. If the value on
the student code is the same, we can rest assured that shout_word has been appropriately defined by the student
and the test passes.

Example 2: for loop

Suppose you want the student to build up a dictionary of word counts based on a list, as follows:

*** =solution
```{python}
words = ['it', 'is', 'a', 'the', 'is', 'the', 'a', 'the', 'it']
counts = {}
for word in words:

if word in counts:
counts[word] += 1

else:
counts[word] = 1

```

To check whether the counts list was correctly built, you can simply use test_object(), but you can also
go deeper if it goes wrong. This calls for a test_correct() in combination with test_object() and
test_for(), that in its turn uses test_object_after_expression():

``` =solution
def check_test():

test_object('counts')

def diagnose_test():
body_test():

test_object_after_expression('counts',
extra_env = {'counts': {'it': 1}},
context_vals = ['it'])

50 Chapter 2. Pythonwhat V1

https://github.com/datacamp/pythonwhat/wiki/test_function_definition


Pythonwhat Documentation, Release 1.2.0

test_object_after_expression('counts',
extra_env = {'counts': {'it': 1}},
context_vals = ['is'])

test_for_loop(index = 1,
test = test_expression_result(), # Check if correct iterable used
body = body_test)

test_correct(check_test, diagnose_test)
```

Let’s focus on the body_test for the for loop. Here, we’re using test_object_after_expression()
twice.

In the first function call, we override the environment so that counts is a dictionary with a single key and value.
Also, the context value, word in this case (the iterator of the for loop), is set to it. In this case, the body of the for
loop - making abstraction of the if-else test - should increment the value of the value, without adding a new key.

In the second function call, we override the environment so that counts is again a dictionary with a single key and
value. This time, the context value is set to is, so a value that is not yet in the counts dictionary, so this should lead
to a counts dictionary with two elements.

As in the first example, test_object_after_expression() sets the environment variables and context val-
ues, runs the expression (in this case the entire body of the for loop), and then inspects the value of counts after
this expression. The combination of the two test_object_after_expression() calls here, will indirectly
check whether both the if and else part of the body has been correctly implemented.

test_object_accessed

test_object_accessed(name, times=1, not_accessed_msg=None, state=None)
Test if object accessed

Checks whether an object, or the attribute of an object, are accessed

Parameters

• name (str) – the name of the object that should be accessed; can contain dots (for at-
tributes)

• times (int) – how often the object specified in name should be accessed.

• not_accessed_msg (str) – custom feedback message when the object was not ac-
cessed.

Examples

Student code

import numpy as np

arr = np.array([1, 2, 3])

x = arr.shape

Solution code

2.1. Legacy Tests 51

Pythonwhat Documentation, Release 1.2.0

import numpy as np

arr = np.array([1, 2, 3])

x = arr.shape

t = arr.dtype

SCT

test_object_accessed("arr"): pass.
test_object_accessed("arr.shape"): pass.
test_object_accessed("arr.dtype"): fail.

def test_object_accessed(name,
times=1,
not_accessed_msg=None)

With test_object(), you can check whether a student correctly created an object. However, in some cases,
you might also be interested whether the student actually used this object to for example assign another object.
test_object_accessed() makes this possible; it is also possible to test object attributes.

The name argument should be a string that specifies the name of the object, or the attribute of a certain object, for
which you want to check if it was accesses. If the object resides inside a package, such as pi in the math package,
use "math.pi". With times, you can specify how often the object or attribute should have been accessed. With
not_accessed_msg you can override the automatically generated feedback message in case name hasn’t been
accessed often enough according to times.

Example

To show how everything works, suppose you have the following submission of a student:

```
import numpy as np
import math as m
arr = np.array([1, 2, 3])
x = arr.shape
print(arr.data)
print(m.e)
```

Let’s have a look at some SCT function calls that either pass or fail and why.

• test_object_accessed("arr") - PASS: The object arr is accessed twice (in arr.shape and arr.
data)

• test_object_accessed("arr", times=3) - FAIL: The objet arr is only accessed twice.

• test_object_accessed("arr.shape") - PASS: The shape attribute of arr is accessed once.

• test_object_accessed("math.e") - PASS: The object e inside the math package is accessed once
(the student uses the alias m, but that is not a problem. In case of an error, the automatically generated message
will take this into account.)

52 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

parts_cheatsheet

test_list_comp

[BODY for i in COMP_ITER if IFS[0] if IFS[1]]

test_dict_comp

{ KEY : VALUE for k, v in COMP_ITER if IFS[0] if IFS[1] }

test_generator_exp

(BODY for i in COMP_ITER if IFS[0] if IFS[1])

test_for_loop

for i in FOR_ITER:
BODY

else:
ORELSE

yes, you can put an else statement at the end!

test_if_else

if TEST:
BODY

else:
ORELSE

or, in the case of elif statements...

if TEST:
BODY

ORELSE

test_lambda

lambda x: BODY

test_try_except

try:
BODY

except BaseException:
HANDLERS['BaseException']

2.1. Legacy Tests 53

Pythonwhat Documentation, Release 1.2.0

except:
HANDLERS['all']

else:
ORELSE

finally:
FINALBODY

test_while

while TEST:
BODY

else:
ORELSE

test_with

with CONTEXT_TEST as context_var:
BODY

test_function_definition

def f(a, b):
BODY

test comprehensions

def test_list_comp(index=1,
not_called_msg=None,
comp_iter=None,
iter_vars_names=False,
incorrect_iter_vars_msg=None,
body=None,
ifs=None,
insufficient_ifs_msg=None,
expand_message=True)

def test_generator_exp(index=1,
not_called_msg=None,
comp_iter=None,
iter_vars_names=False,
incorrect_iter_vars_msg=None,
body=None,
ifs=None,
insufficient_ifs_msg=None,
expand_message=True)

def test_dict_comp(index=1,
not_called_msg=None,
comp_iter=None,
iter_vars_names=False,

54 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

incorrect_iter_vars_msg=None,
key=None,
value=None,
ifs=None,
insufficient_ifs_msg=None,
expand_message=True)

Currently, functionality to test list comprehensions, generator expressions and dictionary comprehensions is
implemented. If you look at the signatures, you’ll see that the arguments for test_list_comp() and
test_generator_exp() are identical. Syntactically, there is close to no difference between list comprehen-
sions and generator expressions, so all tests and settings apply for both cases. For test_dict_comp() there’s only
a small difference: the arguments key and value instead of the body argument, so that you can test the key part of
the dictionary comprehension seperately from the value comprehension.

The above functions work pretty similarly to test_for_loop(), with some additions and customizations here and
there. Let’s go over the argments:

• index: the number of the comprehension in the submission to test. (this is specific to each comprehension, if
there’s one list and one dict comprehension you need index=1 twice.)

• not_called_msg: Custom message in case the comprehension was not coded (or there weren’t enough
comprehensions).

• comp_iter: sub SCT to check the sequence part of the comprehension. Specify this through another function
definition or a lambda function.

• iter_vars_names: whether or not the iterator variables should match the ones in the solution.

• incorrect_iter_vars_msg: Custom message in case the iterator variables don’t match the solution (if
iter_vars_names is True) or if the number of iterator variables doesn’t correspond to the solution.

• body, key, value: sub SCTs to check the body part (for list comps and generator expressions) or the key and
value part of a dictionary comprehension.

• ifs: list of sub-SCTs to check each of the ifs specified inside the comprehension. If you specify ifs, make
sure that the number of sub-SCTs corresponds exactly to the number of ifs that are in the solution.

• insufficient_ifs: custom message in case the student coded less ifs than the corresponding comp in the
solution.

• expand_message: whether or not to expand feedback messages from sub-SCTs with more information about
where in the list comprehension they occur.

Example 1: List comprehension

Suppose you want the student to code a list comprehension like below:

*** =solution
```{python}
x = {'a': 2, 'b':3, 'c':4, 'd':'test'}
[key + str(val) for key,val in x.items() if isinstance(key, str) if isinstance(val,
→˓int)]
```

The following SCT will test several parts of this list comprehension, and relies on automatic feedback messages
everywhere:

*** =sct
```{python}

2.1. Legacy Tests 55



Pythonwhat Documentation, Release 1.2.0

test_list_comp(index=1,
comp_iter=lambda: test_expression_result(),
iter_vars_names=True,
body=lambda: test_expression_result(context_vals = ['a', 2]),
ifs=[lambda: test_function_v2('isinstance', params = ['obj'], do_eval =

→˓[False]),
lambda: test_function_v2('isinstance', params = ['obj'], do_eval =

→˓[False])])
```

By setting iter_vars_names to True, pythonwhat will check that the student actually used the iterator vari-
ables key and val. Notice that in the sub SCT for the body, context_vals are used to set the key and val
iterator variables before the expression is tested. This is similar to how things work in test_for_loop(). Notice
also that inside the list of if sub-SCTs, do_eval is false, because the values key and val are not available there
(setting context vals is currently only possible inside test_expression_*() functions).

test_list_comp() will generate a bunch of meaningful automated messages depending on which error the stu-
dent made:

submission: <empty>
feedback: "The system wants to check the first list comprehension you defined but hasn
→˓'t found it."

submission: [key for key in x.keys()]
feedback: "Check your code in the iterable part of the first list comprehension.
→˓Unexpected expression: expected `dict_items([('a', 2), ('b', 3), ('c', 4), ('d',
→˓'test')])`, got `dict_keys(['a', 'b', 'c', 'd'])` with values."

submission: [a + str(b) for a,b in x.items()]
feedback: "Have you used the correct iterator variables in the first list
→˓comprehension? Make sure you use the correct names!"

submission: [key + '_' + str(val) for key,val in x.items()]
feedback: "Check your code in the body of the first list comprehension. Unexpected
→˓expression: expected `a2`, got `a_2` with values."

submission: [key + str(val) for key,val in x.items()]
feedback: "Have you used 2 ifs inside the first list comprehension?"

submission: [key + str(val) for key,val in x.items() if hasattr(key, 'test') if
→˓hasattr(key, 'test')]
feedback: "Check your code in the first if of the first list comprehension. Have you
→˓called `isinstance()`?"

submission: [key + str(val) for key,val in x.items() if isinstance(key, str) if
→˓hasattr(key, 'test')]
feedback: "Check your code in the second if of the first list comprehension. Have you
→˓called `isinstance()`?"

submission: [key + str(val) for key,val in x.items() if isinstance(key, str) if
→˓isinstance(key, str)]
feedback: "Check your code in the second if of the first list comprehension. Did you
→˓call `isinstance()` with the correct arguments?"

submission: [key + str(val) for key,val in x.items() if isinstance(key, str) if
→˓isinstance(val, str)]
feedback: "Great work!"

56 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

NOTE: the “check your code in the ... of the first list comprehension” parts are included because expand_message
= True.

You can also update SCT to override all automatically generated messages, either inside test_list_comp() itself
or inside the sub-SCTs:

*** =sct
```{python}
test_list_comp(index=1,

not_called_msg='notcalled',
comp_iter=lambda: test_expression_result(incorrect_msg = 'iterincorrect'),
iter_vars_names=True,
incorrect_iter_vars_msg='incorrectitervars',
body=lambda: test_expression_result(context_vals = ['a', 2], incorrect_msg

→˓= 'bodyincorrect'),
ifs=[lambda: test_function_v2('isinstance', params = ['obj'], do_eval =

→˓[False], not_called_msg = 'notcalled1', incorrect_msg = 'incorrect2'),
lambda: test_function_v2('isinstance', params = ['obj'], do_eval =

→˓[False], not_called_msg = 'notcalled2', incorrect_msg = 'incorrect2')],
insufficient_ifs_msg='insufficientifs')

```

In this case, you get the following feedback for different submissions:

submission:
feedback: "notcalled"

submission: [key for key in x.keys()]
feedback: "Check your code in the iterable part of the first list comprehension.
→˓iterincorrect"

submission: [a + str(b) for a,b in x.items()]
feedback: "incorrectitervars"

submission: [key + '_' + str(val) for key,val in x.items()]
feedback: "Check your code in the body of the first list comprehension. bodyincorrect"

submission: [key + str(val) for key,val in x.items()]
feedback: "insufficientifs"

submission: [key + str(val) for key,val in x.items() if hasattr(key, 'test') if
→˓hasattr(key, 'test')]
feedback: "Check your code in the first if of the first list comprehension. notcalled1
→˓"

submission: [key + str(val) for key,val in x.items() if isinstance(key, str) if
→˓hasattr(key, 'test')]
feedback: "Check your code in the second if of the first list comprehension.
→˓notcalled2"

submission: [key + str(val) for key,val in x.items() if isinstance(key, str) if
→˓isinstance(key, str)]
feedback: "Check your code in the second if of the first list comprehension.
→˓incorrect2"

submission: [key + str(val) for key,val in x.items() if isinstance(key, str) if
→˓isinstance(val, str)]
feedback: "Great work!"

2.1. Legacy Tests 57

Pythonwhat Documentation, Release 1.2.0

Example 2: Generator Expressions

An example here won’t be necessary, because it works the exact same way as in Example 1, with the only difference
that in automated feedback, “list comprehension” is replaced with “generator expression”.

Example 3: Dictionary Comprehensions

Suppose you want the student to code a dictionary comprehension like below:

*** =solution
```{python}
x = {'a': 2, 'b':3, 'c':4, 'd':'test'}
[key + str(val) for key,val in x.items() if isinstance(key, str) if isinstance(val,
→˓int)]
```

The following SCT will test several parts of this list comprehension, and relies on automatic feedback messages
everywhere:

*** =sct
```{python}
test_list_comp(index=1,

comp_iter=lambda: test_expression_result(),
iter_vars_names=True,
body=lambda: test_expression_result(context_vals = ['a', 2]),
ifs=[lambda: test_function_v2('isinstance', params = ['obj'], do_eval =

→˓[False]),
lambda: test_function_v2('isinstance', params = ['obj'], do_eval =

→˓[False])])
```

Again, customized messages are generated for different cases:

submission:
feedback: "The system wants to check the first dictionary comprehension you defined
→˓but hasn't found it."

submission: { a:a for a in lst[1:2] }
feedback: "Check your code in the iterable part of the first dictionary comprehension.
→˓ Unexpected expression: expected `['this', 'is', 'a', 'list']`, got `['is']` with
→˓values."

submission: { a:a for a in lst }
feedback: "Have you used the correct iterator variables in the first dictionary
→˓comprehension? Make sure you use the correct names!"

submission: { el + 'a':str(el) for el in lst }
feedback: "Check your code in the key part of the first dictionary comprehension.
→˓Unexpected expression: expected `a`, got `aa` with values."

submission: { el:str(el) for el in lst }
feedback: "Check your code in the value part of the first dictionary comprehension.
→˓Unexpected expression: expected `1`, got `a` with values."

submission: { el:len(el) for el in lst }
feedback: "Have you used 1 ifs inside the first dictionary comprehension?"

58 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

submission: { el:len(el) for el in lst if isinstance('a', str)}
feedback: "Check your code in the first if of the first dictionary comprehension. Did
→˓you call `isinstance()` with the correct arguments?"

submission: { el:len(el) for el in lst if isinstance(el, str)}
feedback: "Great work!"

test_for_loop

test_for_loop(index=1, for_iter=None, body=None, orelse=None, expand_message=True, state=None)
Test parts of the for loop.

This test function will allow you to extract parts of a specific for loop and perform a set of tests specifically on
these parts. A for loop consists of two parts: the sequence, for_iter, which is the values over which are looped,
and the body. A for loop can have a else part as well, orelse, but this is almost never used.:

for i in range(10):
print(i)

Has range(10) as the sequence and print(i) as the body.

Parameters

• index (int) – index of the function call to be checked. Defaults to 1.

• for_iter – this argument holds the part of code that will be ran to check the sequence of
the for loop. It should be passed as a lambda expression or a function. The functions that are
ran should be other pythonwhat test functions, and they will be tested specifically on only
the sequence part of the for loop.

• body – this argument holds the part of code that will be ran to check the body of the for
loop. It should be passed as a lambda expression or a function. The functions that are ran
should be other pythonwhat test functions, and they will be tested specifically on only the
body of the for loop.

• orelse – this argument holds the part of code that will be ran to check the else part of the
for loop. It should be passed as a lambda expression or a function. The functions that are
ran should be other pythonwhat test functions, and they will be tested specifically on only
the else part of the for loop.

• expand_message (bool) – if true, feedback messages will be expanded with
in the ___ of the for loop on line ___. Defaults to True. If False,
test_for_loop() will generate no extra feedback.

Example Student code:

for i in range(10):
print(i)

Solution code:

for n in range(10):
print(n)

SCT:

2.1. Legacy Tests 59

Pythonwhat Documentation, Release 1.2.0

test_for_loop(1,
for_iter = test_function("range"),
body = test_expression_output(context_val = [5])

This SCT will evaluate to True as the function range is used in the sequence and the function
test_exression_output() will pass on the body code.

test_for_loop(index=1,
for_iter=None,
body=None,
orelse=None,
expand_message=True)

As the name suggesets, you can use test_for_loop() to test if a for loop was properly coded. Similar to how
test_if_else() and test_while_loop() works, test_for_loop() parses the for loop in the student’s
submission and breaks it up into its composing parts. Next, it also parses the for loop in the solution solution, and
compares the parts between student submission and solution. It does this through sub-SCTs that you specify in
cond_test and expr_test.

Example 1

Suppose you want the student to implement an algorithm that calculates fibonacci’s row (until n = 20) using a simple
for loop. The solution could look like this:

*** =solution
```{python}
# Initialise the row
fib = [0, 1]

# Update the row correctly each loop
for n in range(2, 20):

fib.append(fib[n-2] + fib[n-1])
```

An SCT to accompany this exercise could be the following:

*** =sct
```{python}
def test_for_iter():

"You have to iterate over `range(2, 20)`"
test_function("range",

not_called_msg=msg,
incorrect_msg=msg)

def test_for_body():
msg = "Make sure your row, `fib`, updates correctly"
test_object_after_expression("fib",

extra_env={ "fib": [0, 1, 1, 2] },
context_vals=[4],
undefined_msg=msg,
incorrect_msg=msg)

test_for_loop(index=1,
for_iter=test_for_iter,
body=test_for_body)

```

60 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

Notice that two self-defined functions, test_for_iter() and test_for_body() are used to specify the sub-
SCTs for the different parts in the for loop. With index = 1, you tell pythonwhat that you want to check the
first for loop you find in the student submission with the first for loop in the solution.

The for_iter part of test_for_loop() tests whether the loop with index 1 loops over the correct range. The
tests in this sub-SCT are run on the sequence part of the loop, which in this case for the solution is range(2, 20).
With test_function(), we can test this. In other cases, you could use e.g. test_expression_result(),
to test the result of the sequence part.

The body part of test_for_loop() tests whether fib is updated correctly. The tests in this sub-SCT are run
on the body of the loop. The test_object_after_expression(). This function will test an object after
the active expression is run in the student and solution process. In this case it will check if fib is updated the
same in the student and solution process after one loop through the body of the for. Two important arguments for
test_object_after_expression() are:

• extra_env = { "fib": [0, 1, 1, 2] }: when running the body of the for loop, the process will
be updated with these extra environment variables. In this case this means that before the body is ran, fib will
be initialised to [0, 1, 1, 2].

• context_vals = [4]: this argument contains the values of the loop’s variable. In the solution code, for
example, there will be one: n. This means that n will be initialised to 4 in the solution process when the body
of the for loop is run. The student can give any name to n, as long as the functionality remains the same.

You may have noticed that the helper functions that are used within test_for_loop() contain feedback messages
as well. When they are used within a test_for_loop(), these messages will automatically be extended with “in
the ___ of the for loop on line ___.”. To avoid this extension, you could set the option expand_message = False
in test_for_loop().

Example 2: Multiple context vals

If you have multiple context vals, things largely work the same way. Suppose you want somebody to print out the keys
and values of a dictionary as follows:

*** =solution
```{python}
my_dict = {'a': 1, 'b': 2, 'c': 3}
for k, v in my_dict.items():

print(k + ' - ' + str(v))
```

An appropriate SCT would be:

*** =sct
```{python}
test_object('my_dict')
test_for_loop(index=1,

for_iter = lambda: test_expression_result(),
body = lambda: test_expression_output(context_vals = ['a', 1]))

```

In this case, when you’re checking the output of the body of the for loop, you’re telling k to be 'a' and v to be 1.

test_if_else

test_if_else(index=1, test=None, body=None, orelse=None, expand_message=True, use_if_exp=False,
state=None)

Test parts of the if statement.

2.1. Legacy Tests 61

Pythonwhat Documentation, Release 1.2.0

This test function will allow you to extract parts of a specific if statement and perform a set of tests specifically on
these parts. A for loop consists of three potential parts: the condition test, test, which specifies the condition
of the if statement, the body, which is what’s executed if the condition is True and a else part, orelse, which
will be executed if the condition is not True.:

if 5 == 3:
print("success")

else:
print("fail")

Has 5 == 3 as the condition test, print("success") as the body and print("fail") as the else part.

Parameters

• index (int) – index of the function call to be checked. Defaults to 1.

• test – this argument holds the part of code that will be ran to check the condition test of
the if statement. It should be passed as a lambda expression or a function definition. The
functions that are ran should be other pythonwhat test functions, and they will be tested
specifically on only the condition test of the if statement.

• body – this argument holds the part of code that will be ran to check the body of the if
statement. It should be passed as a lambda expression or a function definition. The functions
that are ran should be other pythonwhat test functions, and they will be tested specifically
on only the body of the if statement.

• orelse – this argument holds the part of code that will be ran to check the else part of
the if statement. It should be passed as a lambda expression or a function definition. The
functions that are ran should be other pythonwhat test functions, and they will be tested
specifically on only the else part of the if statement.

• expand_message (bool) – if true, feedback messages will be expanded with in
the ___ of the if statement on line ___. Defaults to True. If False,
test_if_else() will generate no extra feedback.

Example Student code:

a = 12
if a > 3:

print('test %d' % a)

Solution code:

a = 4
if a > 3:

print('test %d' % a)

SCT:

test_if_else(1,
body = test_expression_output(

extra_env = { 'a': 5 }
incorrect_msg = "Print out the correct things"))

This SCT will pass as test_expression_output() is ran on the body of the if statement
and it will output the same thing in the solution as in the student code.

test_if_else(index=1,
test=None,
body=None,

62 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

orelse=None,
expand_message=True)

test_if_else() allows you to robustly check if statements, optionally extended with elif and else com-
ponents. For each of the components of an if-else construct test_if_else() takes several ‘sub-SCTs’. These
‘sub-SCTs’, that you have to pass in the form of lambda functions or through a function that defines all tests, are
executed on these separate parts of the submission.

Example 1

Suppose an exercise asks the student to code up the following if-else construct:

*** =solution
```{python}
# a is set to 5
a = 5

# If a < 5, print out "It's small", else print out "It's big"
if a < 5:

else:
print("It's big")

```

The if-else construct here consists of three parts:

• The condition to check: a < 5. The test argument of test_if_else() specifies the sub-SCT to test this.

• The body of the if statement: print("It's small"). The body argument of test_if_else()
specifies the sub-SCT to test this.

• The else part: print("It's big"). The orelse argument of test_if_else() specifies the sub-SCT
to ttest this.

You can thus write our SCT as follows. Notice that for the test argument a function is used to specify different tests;
for the body and orelse arguments two lambda functions suffise.

*** =sct
```{python}
def sct_on_condition_test():

test_expression_result({"a": 4})
test_expression_result({"a": 5})
test_expression_result({"a": 6})

test_if_else(index = 1,
test = sct_on_condition_test,
body = lambda: test_function("print")
orelse = lambda: test_function("print"))

```

The test part

Have a look at the sct_on_condition_test(), that is used to specify the sub-SCT for the test part of the
if-else-construct, so a < 5. It contains three calls of the test_expression_result function. These functions
are executed in a ‘narrow scope’ that only considers the condition of the student code, and the condition of the solution
code.

2.1. Legacy Tests 63

Pythonwhat Documentation, Release 1.2.0

More specifically, test_expression_result({"a": 5}) will check whether executing the if condition
that the student coded when a equals 5 leads to the same result as executing the if condition that is coded in
the solution when a equals 5. That way, you can robustly check the validity of the if test. There are three
test_expression_result() calls to see if the condition makes sense for different inputs.

Suppose that the student incorrectly used the condition a < 6 instead of a < 5.
test_expression_result({"a": 5}) will see what the result is of a < 6 if a equals 5. The re-
sult is True. Next, it checks the result of a < 5, the if condition of the solution, which is False. There is a
mismatch between the ‘student result’ and the ‘solution result’, and a meaningful feedback messages is generated.

The body and orelse parts

In a similar way, the functions that are used as lambda functions in both the body and orelse part, will also be
executed in a ‘narrow scope’, where only the body and orelse part of the student’s submission and the solution are
used.

test_if_exp

test_if_exp(index=1, test=None, body=None, orelse=None, expand_message=True, state=None)
Test parts of the if statement.

This test function will allow you to extract parts of a specific if statement and perform a set of tests specifically on
these parts. A for loop consists of three potential parts: the condition test, test, which specifies the condition
of the if statement, the body, which is what’s executed if the condition is True and a else part, orelse, which
will be executed if the condition is not True.:

if 5 == 3:
print("success")

else:
print("fail")

Has 5 == 3 as the condition test, print("success") as the body and print("fail") as the else part.

Parameters

• index (int) – index of the function call to be checked. Defaults to 1.

• test – this argument holds the part of code that will be ran to check the condition test of
the if statement. It should be passed as a lambda expression or a function definition. The
functions that are ran should be other pythonwhat test functions, and they will be tested
specifically on only the condition test of the if statement.

• body – this argument holds the part of code that will be ran to check the body of the if
statement. It should be passed as a lambda expression or a function definition. The functions
that are ran should be other pythonwhat test functions, and they will be tested specifically
on only the body of the if statement.

• orelse – this argument holds the part of code that will be ran to check the else part of
the if statement. It should be passed as a lambda expression or a function definition. The
functions that are ran should be other pythonwhat test functions, and they will be tested
specifically on only the else part of the if statement.

• expand_message (bool) – if true, feedback messages will be expanded with in
the ___ of the if statement on line ___. Defaults to True. If False,
test_if_else() will generate no extra feedback.

Example Student code:

64 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

a = 12
if a > 3:

print('test %d' % a)

Solution code:

a = 4
if a > 3:

print('test %d' % a)

SCT:

test_if_else(1,
body = test_expression_output(

extra_env = { 'a': 5 }
incorrect_msg = "Print out the correct things"))

This SCT will pass as test_expression_output() is ran on the body of the if statement
and it will output the same thing in the solution as in the student code.

test_if_exp is a wrapper around test_if_else, which tells it to look for inline if expressions. As such, it
uses the same arguments. See.

What is an inline if expression?

An inline if expression looks like..

x = 'a' if True else 'b'

This is in contrast to an if block, which looks like..

if True:
x = 'a'

else:
x = 'b'

Parts

This test tries to break code into 3 parts, BODY, TEST, and ORELSE. The table below shows an example inline if
expression on the left, and the parts that would be extracted on the right.

| code | parts breakdown | | ————————- | ——————— | | x = 'a' if True else 'b' | x =
BODY if TEST else ORELSE |

Nested if expressions

Just like test_if_else, test_if_exp will not find a nested if expression. Instead, the nested portion will be
inside one of the parts. For example, below is an exercise with an if expression in the ORELSE part of another if
expression.

*** =solution

x = 'a' if True else ('b' if False else 'c')

2.1. Legacy Tests 65

Pythonwhat Documentation, Release 1.2.0

*** =sct

test_if_exp(orelse=lambda: test_if_exp(orelse=lambda: test_student_typed('c')))

The SCT above tests that the student typed ‘c’ in the ORELSE part of the inner if expression. In parts, this looks
like..

BODY1 if TEST1 else (ORELSE1 = BODY2 if TEST2 else ORELSE2)

test_try_except

test_try_except(index=1, not_called_msg=None, body=None, handlers={}, ex-
cept_missing_msg=None, orelse=None, orelse_missing_msg=None, finalbody=None,
finalbody_missing_msg=None, expand_message=True, state=None)

Test whether the student correctly coded a try-except block.

This function allows you to test specific parts of a try-except block. A try-except block consists of 4 parts: a
body, error handlers, plus (rarely) an else and final block.

try: print(hello)
except NameError: print('hello what?')
except: print('unexplained error')
else: print('else block')
finally: print('final block')

Parameters

• index (int) – index of the try-except block to check.

• not_called_msg – override the default message when too few try-except blocks found
in student code.

• body – sub-sct to test the code of the try block.

• handlers – a dictionary, where the keys are the error classes you expect the student to
capture (for the general except:, use ‘all’), and the values are sub-SCTs for each of these
except blocks.

• except_missing_message – override the default message when a expect block in the
handlers arg is missing.

• orelse – similar to body, but for the else block.

• finalbody – similar to body, but for the finally block.

• _missing_msg – custom messages if the orelse, or finalbody pieces are missing.

def test_try_except(index=1,
not_called_msg=None,
body=None,
handlers={},
except_missing_msg = None,
orelse=None,
orelse_missing_msg=None,
finalbody=None,
finalbody_missing_msg=None,
expand_message=True)

66 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

With test_try_except, you can check whether the student correctly coded a try-except block.

As usual, index controls which try-except block to check. With not_called_msg you can choose a custom
message to override the automatically defined message in case not enough try-except blocks weren’t found in the
student code. body is a sub-sct to test the code of the try block. orelse and finalbody work the same way,
but here there are also _msg arguments to provide custom messages in case these parts ar missing. Finally, there’s
also handlers and except_missing_msg. handlers should be a dictionary, where the keys are the error
classes you expect the student to capture (for the general except:, use 'all'), and the values are sub-SCTs for
each of these except blocks. An except block is only checked for existence and correctness if you mention it
inside handlers. If it is not available, an automatic message will be generated, but this can ge overriden with
expect_missing_msg.

Note: For more information on sub-SCTs, visit part checks.

Example 1

Suppose you want to student to code up the following (completely useless) piece of Python code:

*** =solution
```{python}
try:

x = max([1, 2, 'a'])
except TypeError as e:

x = 'typeerror'
except ValueError:

x = 'valueerror'
except (ZeroDivisionError, IOError) as e:

x = e
except :

x = 'someerror'
else :

passed = True
finally:

print('done')
```

To test each and every part of this model solution, you can use the following SCT:

*** =sct
```{python}
import collections
handlers = collections.OrderedDict()
handlers['TypeError'] = lambda: test_object_after_expression('x')
handlers['ValueError'] = lambda: test_object_after_expression('x')
handlers['ZeroDivisionError'] = lambda: test_object_after_expression('x', context_
→˓vals = ['anerror'])
handlers['IOError'] = lambda: test_object_after_expression('x', context_vals = [
→˓'anerror'])
handlers['all'] = lambda: test_object_after_expression('x')
test_try_except(index = 1,

body = lambda: test_function("max"),
handlers = handlers,
orelse = lambda: test_object_after_expression('passed'),
finalbody = lambda: test_function('print'))

```

Notice that:

2.1. Legacy Tests 67

Pythonwhat Documentation, Release 1.2.0

• We use the OrderedDict() from the collections module so that the dictionary we pass in the
handlers argument is always gone through in the same order.

• We can use context_vals to initalize the context value, e in this case.

test_while_loop

test_while_loop(index=1, test=None, body=None, orelse=None, expand_message=True, state=None)
Test parts of the while loop.

This test function will allow you to extract parts of a specific while loop and perform a set of tests specifically
on these parts. A while loop generally consists of two parts: the condition test, test, which is the condition
that is tested each loop, and the body. A for while can have a else part as well, orelse, but this is almost
never used.:

a = 10
while a < 5:

print(a)
a -= 1

Has a < 5 as the condition test and print(i) as the body.

Parameters

• index (int) – index of the function call to be checked. Defaults to 1.

• test – this argument holds the part of code that will be ran to check the condition test of
the while loop. It should be passed as a lambda expression or a function definition. The
functions that are ran should be other pythonwhat test functions, and they will be tested
specifically on only the condition test of the while loop.

• body – this argument holds the part of code that will be ran to check the body of the while
loop. It should be passed as a lambda expression or a function definition. The functions
that are ran should be other pythonwhat test functions, and they will be tested specifically
on only the body of the while loop.

• orelse – this argument holds the part of code that will be ran to check the else part of
the while loop. It should be passed as a lambda expression or a function definition. The
functions that are ran should be other pythonwhat test functions, and they will be tested
specifically on only the else part of the while loop.

• expand_message (bool) – if true, feedback messages will be expanded with in
the ___ of the while loop on line ___. Defaults to True. If False,
test_for_loop() will generate no extra feedback.

Example

Student code:

a = 10
while a < 5:

print(a)
a -= 1

Solution code:

a = 20
while a < 5:

print(a)
a -= 1

68 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

SCT:

test_while_loop(1,
test = test_expression_result({"a": 5}),
body = test_expression_output({"a": 5}))

This SCT will evaluate to True as condition test will have thes same result in student and solution
code and test_exression_output() will pass on the body code.

test_while_loop(index=1,
test=None,
body=None,
orelse=None,
expand_message=True)

Since a lot of the logic of test_if_else() and test_for_loop() can be applied to test_while_loop(),
this article is limited to an example. For more info see the wiki on test_if_else() and test_for_loop(),
or the documentation of test_while_loop().

*** =solution
```{python}
a = 10
while a > 5:

print("%s is bigger than 5" % a)
a -= 1

```

*** =sct
```{python}
def sct_on_condition_test():

test_expression_result({"a": 4})
test_expression_result({"a": 5})
test_expression_result({"a": 6})

test_while_loop(index = 1,
test = sct_on_condition_test,
body = lambda: test_expression_output({"a":4}))

```

test_with

test_with(index, context_vals=False, context_tests=None, body=None, undefined_msg=None, con-
text_vals_len_msg=None, context_vals_msg=None, expand_message=True, state=None)

Test a with statement. with open_file(‘...’) as bla:

[open_file(‘...’).__enter__()]

with open_file(‘...’) as file: []

def test_with(index,
context_vals=False,
context_tests=None,
body=None,
undefined_msg=None,

2.1. Legacy Tests 69

Pythonwhat Documentation, Release 1.2.0

context_vals_len_msg=None,
context_vals_msg=None,
expand_message=True)

In Python, one can build so-called context managers with the with statement.

Have a look at an example of such a context manager:

with open('something.txt') as file1, open('something_else.csv') as file2: # the
→˓contexts

body of the with statement
do something with file1 and file2
...

Two important parts can be distinguished: the contexts that are being opened and the body, in which opera-
tions are done with these contexts. In this example, two contexts are defined: open('something.txt') and
open('something_else.csv'). The context can be given names (this is optional). In the example, the first
one will be called file1 after the with statement, and the second one file2.

test_with() is written to allow you to test all these parts of the with statement separately.

Example 1

Suppose you want the student to code something as follows:

*** =solution
```{python}
with open('moby_dick.txt') as moby, open('lotr.txt') as lotr:

print("First line of Moby Dick: %r." % moby.readline())
print("First line of The Lord of The Rings: The Two Towers: %r." % lotr.

→˓readline())

In this case you want to test two things: you want the student to open up the correct context and you want them to print
out the correct information. Let’s assume that how the context are named is not important to you. The solution uses
moby and lotr, but the student can use any name he or she wants. Note these names will not be tested by default,
but you can change that by setting context_vals = True.

In the SCT, we specify a sub-SCT for context_tests and for body. The former tests the contexts, the latter tests
the body. As before, you can specify these sub-SCTs through lambda functions or a separate function definition:

*** =sct
```{python}
def test_with_body():

test_function('print', 1)
test_function('print', 2)

test_with(1,
context_tests = [

lambda: test_function('open'),
lambda: test_function('open')

],
body = test_with_body)

```

Different from before, htough, context_tests expects a list of lambda functions or customly defined functions.
The index in this list of functions represents the context against which the SCTs will be tested. The first lambda/custom
function in context_tests will be tested against the first context. The second lambda/custom function in

70 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

context_tests will be tested against the second context. If only one function is given in context_tests,
only the first context will be tested. The body argument requires one lambda/custom function to be passed, this
contains the sub-SCT that is run against the with statements’ body.

test_function_definition

test_function_definition(name, arg_names=True, arg_defaults=True, body=None, re-
sults=None, outputs=None, errors=None, not_called_msg=None,
nb_args_msg=None, other_args_msg=None, arg_names_msg=None,
arg_defaults_msg=None, wrong_result_msg=None,
wrong_output_msg=None, no_error_msg=None,
wrong_error_msg=None, expand_message=True, state=None)

Test a function definition.

This function helps you test a function definition. Generally four things can be tested:

1. The argument names of the function (including if the correct defaults are used)

2. The body of the functions (does it output correctly, are the correct functions used)

3. The return value with a certain input

4. The output value with a certain input

5. Whether certain inputs generate an error and what type of error

Custom feedback messages can be set for all these parts, default messages are generated automatically if none
are set.

Parameters

• name (str) – the name of the function definition to be tested.

• arg_names (bool) – if True, the argument names will be tested, if False they won’t be
tested. Defaults to True.

• arg_defaults (bool) – if True, the default values of the arguments will be tested, if
False they won’t be tested. Defaults to True.

• body – this arguments holds the part of the code that will be ran to check the body of the
function definition. It should be passed as a lambda expression or a function. The functions
that are ran should be other pythonwhat test functions, and they will be tested specifically
on only the body of the for loop. Defaults to None.

• results (list(list)) – a list of lists representing arguments that should be passed to
the defined function. These arguments are passed to the function in the student environment
and the solution environment, the results (what’s returned) are compared.

• outputs (list(list)) – a list of lists representing arguments that should be passed to
the defined function. These arguments are passed to the function in the student environment
and the solution environment, the outpus are compared.

• errors (list(list)) – a list of lists representing arguments that should be passed to
the defined function. These arguments are passed to the function in the student environment
and the solution environment, the errors they generate are compared.

• not_called_msg (str) – message if the function is not defined.

• nb_args_msg (str) – message if the number of arguments do not matched.

• arg_names_msg (str) – message if the argument names do not match.

• arg_defaults_msg (str) – message if the argument default values do not match.

2.1. Legacy Tests 71



Pythonwhat Documentation, Release 1.2.0

• wrong_result_msg (str) – message if one of the tested function calls’ result did not
match.

• wrong_output_msg (str) – message if one of the tested functions calls’ output did not
match.

• no_error_msg (str) – message if one of the tested function calls’ result did not generate
an error.

• wrong_error_msg (str) – message if the error that one of the tested function calls
generated did not match.

• expand_message (bool) – only relevant if there is a body test. If True, feedback mes-
sages defined in the body test will be preceded by ‘In your definition of ___, ‘. If False,
test_function_definition() will generate no extra feedback if the body test fails. Defaults to
True.

Example Student code:

def shout( word, times = 3):
shout_word = not_word + '???'
print( shout_word )
return word * times

Solution code:

def shout( word = 'help', times = 3 ):
shout_word = word + '!!!'
print( shout_word )
return word * times

SCT:

test_function_definition('shout') # fail
test_function_definition('shout', arg_defaults = False) # pass
test_function_definition('shout', arg_defaults = False, # fail

outputs = [('help')])

test_function_definition('shout', arg_defaults = False, # pass
results = [('help', 2)])

test_function_definition('shout', args_defaults = False # pass
body = test_function('print', args = []]))

def test_function_definition(name,
arg_names=True,
arg_defaults=True,
body=None,
results=None,
outputs=None,
errors=None,
not_called_msg=None,
nb_args_msg=None,
other_args_msg=None,
arg_names_msg=None,
arg_defaults_msg=None,
wrong_result_msg=None,
wrong_output_msg=None,
no_error_msg=None,

72 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

wrong_error_msg=None,
expand_message=True):

In more advanced courses, you’ll sometimes want students to define their own functions. With
test_function_definition() it is possible to test such user-defined functions in a robust way. This func-
tion allows you to test four things:

1. The argument names of the function (including if the correct defaults are used)

2. The body of the functions (does it output correctly, are the correct functions used)

3. The return value with a certain input

4. The output value with a certain input

Example 1

Say you want a student to write a very basic function to set numbers in a base from 1 up until 9 to a decimal. To not
overcomplicate things you just ask them to implement the basic functionality; they don’t have to catch any exceptions.
A solution to the exercise can like like this:

*** =solution
```{python}
def to_decimal(number, base = 2):

print("Converting %d from base %s to base 10" % (number, base))
number_str = str(number)
number_range = range(len(number_str))
multipliers = [base ** ((len(number_str) - 1) - i) for i in number_range]
decimal = sum([int(number_str[i]) * multipliers[i] for i in number_range])
return decimal

```

You could test the function like this:

*** =sct
```{python}
All of the following test_function_definition() functions are done on the same
function definition.

Test the function, see that the defaults of the arguments are the same.
For this function, we don't care about the argument names of the function.
Note: generally, we DO care about the names of the arguments, since they can
be used as keywords. arg_defaults and arg_names will be set to True by default.

test_function_definition("to_decimal", arg_defaults = True, arg_names = False)

Here, a feedback message will be generated. You can overwrite this feedback
message by using:
test_function_definition("to_decimal", arg_defaults = True, arg_names = False,
arg_defaults_msg = "Use the correct default argument values!")
In the following tests, I'll always use the standard feedback messages, remember
→˓they
can almost always be overwritten.

We want to test whether the function returns the correct things with certain inputs.

test_function_definition("to_decimal", arg_names = False, arg_defaults = False, #
→˓Already tested this

2.1. Legacy Tests 73

Pythonwhat Documentation, Release 1.2.0

results = [
[1001101, 2],
]1212357, 8]

)

This will run to_decimal(1001101, 2) and to_decimal(1212357, 8) in student and
→˓solution
process, and match the results. If they don't match, a feedback message will be
→˓generated.
Note: here we've set arg_defaults to False, because we already tested this in the
→˓first
test_function_definition.

We want to test the output of the function with certain inputs.

test_function_definition("to_decimal", arg_names = False, arg_defaults = False, #
→˓Already tested this

outputs = [
[1234, 6],
[8888888, 9]

)

This will run to_decimal(1234, 6) and to_decimal(8888888, 9) in solution and student
process and compare their printed output.

Finally, we might want them to use a certain function. For this we can do tests
→˓specifically
on the body of the function. Remember you can use lambda functions or custom
→˓functions for this
(also see wiki about test_if_else(), test_for_loop() and test_while_loop().

test_function_definition("to_decimal", arg_names = False, arg_defaults = False, #
→˓Already tested this

body = lambda: test_function("sum", args = [], incorrect_msg = "you should use
→˓the `sum()` function."))

This will test the body of the function definition, and see if the function sum()
→˓is used.
Note that the generated feedback will be preceded by: 'In your definition of `to_
→˓decimal()`, ...'
So if the last test doesn't pass, this feedback will be generated:
In your definition of `to_decimal()`, you should use the `sum()` function.
```

Pitfall: you have to watch out when using test_function() in a body test, you should never test arguments that
are only defined within the scope of the function (e.g. function parameters). This is the reason why we used args =
[] in the last test, because the argument used in sum() can not be calculated to verify in the global scope. This is
something which would require architectural changes in the pythonwhat package.

Example 2: User-defined errors

In some cases, you’ll want the student to code resilience against incorrect inputs or behavior. To test this, you can use
the errors, no_error_msg and wrong_error_msg arguments. The first is similar to results, and specifies
the input arguments as a list of tuples or a list of lists, that have to generate an error. With no_error_msg you can
control the message that is presented if running one of these argument sets does not generate an error, while it should.
With wrong_error_msg, you control the message that is presented if the type of the error (or exception) that is

74 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

thrown does not correspond to the type that is thrown when the function is called in the solution process.

Suppose you want the student to code up a function inc, that increments a number if it’s positive. If it’s not, you want
the function to raise a ValueError. A solution could look like this:

*** =solution
```{python}
def inc(num):

if num < 0:
raise ValueError('num is negative')

return(num + 1)
```

To test this, we can use the following SCT (we’re only focussing on the errors part here; of course you can extend
the test_function_definition() call with more checks on arguments, results, body, etc.):

*** =sct
```{python}
test_function_definition("inc", errors = [[-1]])
```

If the student submits the following code:

def inc(num):
return(num + 1)

the SCT will see it’s incorrect and throw the message: Calling inc(-1) doesn’t result in an error, but it should!

If the student submits the following code:

def inc(num):
if num < 0:

raise NameError('num is negative')
return(num + 1)

the SCT will see it’s incorrect and throw the message: Calling inc(-1) should result in a ValueError, instead
got a NameError.

Currently, there isn’t a way to test the actual message you pass with errors you raise.

Example 3: *args and **kwargs

When defining a function in Python, it also possible to specify so-called ‘unordered non-keyword arguments’, with
a *, and ‘unordered keyword arguments’. Typically, these are called args and kwargs respectively, but this is not
required.

Have a look at the following example:

*** =solution
```{python}
def my_fun(x, y = 4, z = ['a', 'b'], *args, **kwargs):

k = len(args)
l = len(kwargs)
print("just checking")
return k + l

```

An SCT to check this function definition:

2.1. Legacy Tests 75



Pythonwhat Documentation, Release 1.2.0

*** =sct
```{python}
def inner_test():

context = ['r', 's', ['c', 'd'], ['t', 'u'], {'a': 2, 'b': 3, 'd':4}]
test_object_after_expression('k', context_vals = context)
test_object_after_expression('l', context_vals = context)

test_function_definition("my_fun", body = inner_test,
results = [{'args': ['r', 's', ['c', 'd'], 't', 'u', 'v'], 'kwargs': {'a': 2,

→˓'b': 3, 'd': 4}}],
outputs = [{'args': ['r', 's', ['c', 'd'], 't', 'u', 'v'], 'kwargs': {'a': 2,

→˓'b': 3, 'd': 4}}])
```

There are different things to note:

• By default, the names of the * argument and the ** argument are checked, if they are defined in the solution.
This is controlled through arg_names, just like for ‘regular’ arguments. To override the automatic message
that is thrown if the * or ** arg is not specified or not appropriately named, use other_args_msg.

• The * and ** args are also part of the context values that you can specify in ‘inner tests’. They are appended
to the normal arguments: first the *, then the ** argument. You can see in the context object, that the
penultimate element is used to specify the *args argument, and the last element, a dictionary, is used to
specify the ** argument.

• Before, you saw that results, outputs, and errors should be a list of lists, where the inner list is
the list of arguments. To also cater for explicitly keyworded arguments, you can also specify a list of dic-
tionaries. Each dictionary represents one call of the user-defined fucntion and should contain two elements:
'args' and 'kwargs'. Behind the scenes, the function will be called as: my_fun([*d['args'],

**d['kwargs']]), where d is the two-key dictionary.

Sidenote

Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’ and
‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur, read
the Processes article.

test_function

test_function(name, index=1, args=None, keywords=None, eq_condition=’equal’, do_eval=True,
not_called_msg=None, args_not_specified_msg=None, incorrect_msg=None,
add_more=False, highlight=True, state=None)

Test if function calls match.

This function compares a function call in the student’s code with the corresponding one in the solution code.
It will cause the reporter to fail if the corresponding calls do not match. The fail message that is returned will
depend on the sort of fail.

Parameters

• name (str) – the name of the function to be tested.

• index (int) – index of the function call to be checked. Defaults to 1.

• args (list(int)) – the indices of the positional arguments that have to be checked. If
it is set to None, all positional arguments which are in the solution will be checked.

• keywords (list(str)) – the indices of the keyword arguments that have to be checked.
If it is set to None, all keyword arguments which are in the solution will be checked.

76 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

• eq_condition (str) – how arguments/keywords are compared. Currently, only “equal”
is supported, meaning that the result in student and solution process should have exactly the
same value.

• do_eval (bool) – True: arguments are evaluated and compared. False: arguments are
not evaluated but ‘string-matched’. None: arguments are not evaluated; it is only checked if
they are specified.

• not_called_msg (str) – feedback message if the function is not called.

• args_not_specified_msg (str) – feedback message if the function is called but not
all required arguments are specified

• incorrect_msg (str) – feedback message if the arguments of the function in the solu-
tion doesn’t match the one of the student.

Example Student code:

import numpy as np
np.mean([1,2,3])
np.std([2,3,4])

Solution code:

import numpy
numpy.mean([1,2,3], axis = 0)
numpy.std([4,5,6])

SCT:

test_function("numpy.mean", index = 1, keywords = []) # pass
test_function("numpy.mean", index = 1) # fail
test_function(index = 1, incorrect_op_msg = "Use the correct operators
→˓") # fail
test_function(index = 1, used = [], incorrect_result_msg = "Incorrect
→˓result") # fail

test_function(name,
index=1,
args=None,
keywords=None,
eq_condition="equal",
do_eval=True,
not_called_msg=None,
incorrect_msg=None)

test_function() enables you to test whether the student called a function correctly. The function first tests if the
specified function is actually called by the student, and then compares the call with calls of the function in the solution
code. Next, it can compare the parameters passed to these functions. Because test_function() also uses the
student and solution process, this can be done in a very concise way.

Example 1

Suppose you want the student to call the round() function on pi, as follows:

*** =solution
```{python}
This is pi

2.1. Legacy Tests 77

Pythonwhat Documentation, Release 1.2.0

pi = 3.14159

Round pi to 3 digits
r_pi = round(pi, 3)
```

The following SCT tests whether the round() function is used correctly:

*** =sct
```{python}
test_function("round")
success_msg("Great job!")
```

This is a very robust way to test whether round() is used, much more robust when comparing to
test_student_typed(). test_function() tests whether the student has called the function round() and
checks whether the values of the arguments are the same as in the solution. So in this case, it tests wether round() is
used with its first argument equal to 3.14159 and the second argument equal to 3. test_function() figures out
the values of these arguments from the solution code and the solution processes that corresponds with it. The above
SCT would accept all of the following student submissions:

• round(3.14159, 3)

• pi = 3.14159; dig = 3; round(pi, dig)

• int_part = 3; dec_part = 0.14159; round(int_part + dec_part, 3)

By default, test_function() tests all arguments that are specified in the solution code. It is also possible to check
whether a function is used and only check specific positional arguments. For example,

*** =sct
```{python}
test_function("round", args=[0])
success_msg("Great job!")
```

will only test whether the first argument’s value is 3.14159. A student submission that is round(pi, 5) would
also pass this SCT.

With args, you can also control whether or not to actually check the values that were passed as parameters. Say you
only want to check that the function round() was called:

*** =sct
```{python}
test_function("round", args=[])
success_msg("Great job!")
```

test_function() will automatically generate meaningful feedback, but you can also override these messages
with not_called_msg and incorrect_msg. The former controls the message that is thrown if the student
didn’t call the specified function in the first place. The latter is thrown if the student did not correctly set the arguments
in the function call:

*** =sct
```{python}
test_function("round",

not_called_msg = "You did not call `round()` to round the irrational
→˓number, `pi`.",

incorrect_msg = "Be sure to round `pi` to `3` digits.`)

78 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

success_msg("Great job!")
```

Example 2: Multiple function calls

index, which is 1 by default, becomes important when there are several calls of the same function. Suppose that
your exercise requires the student to call the round() function twice: once on pi and once on e, Euler’s number. A
possible solution could be the following:

*** =solution
```{python}
Call round on pi
round(3.14159, 3)

Call round on e
round(2.71828, 3)
```

To test both these function calls, you’ll need the following SCT:

*** =sct
```{python}
test_function("round", index=1)
test_function("round", index=2)
success_msg("Two in a row, great!")
```

The first test_function() call, where index=1, checks the solution code for the first function call of round(),
finds it - round(3.14159, 3) - and then goes to look through the student code to find a function call of round()
that matches the arguments. It is perfectly possible that there are 5 function calls of round() in the student’s
submission, and that only the fourth call matches the requirements for test_function(). As soon as a function
call is found in the student code that passes all tests, pythonwhat heads over to the second test_function()
call, where index=2. The same thing happens: the second call of round() is found from the solution code, and
a match is sought for in the student code. This time, however, the function call that was matched before is now
‘blacklisted’; it is not possible that the same function call in the student code causes both test_function() calls
to pass.

This means that all of the following student submissions would be accepted:

• round(3.14159, 3); round(2.71828, 3)

• round(2.71828, 3); round(3.14159, 3)

• round(3.14159, 3); round(123.456); round(2.71828, 3)

• round(2.71828, 3); round(123.456); round(3.14159, 3)

Of course, you can also specify all other arguments to customize your test, such as do_eval, args,
not_called_msg and incorrect_msg.

Example 3: Custom feedback

By default test_function() checks all arguments and keywords that are specified in the solution; if you specify
incorrect_msg, any error to one of these arguments will replaced by the same custom message. If you want to
provide different custom error messages for different arguments, you can do so with multiple function calls. To, for
example, provide different feedback for the first and second argument of the round() function:

2.1. Legacy Tests 79



Pythonwhat Documentation, Release 1.2.0

*** =sct
```{python}
test_function("round", args = [0], index=1, incorrect_msg = 'first arg wrong!')
test_function("round", args = [1], index=1, incorrect_msg = 'second arg wrong!')
success_msg("Well done")
```

NOTE: currently, test_function() automatically checks all arguments and keywords that you specify in corre-
sponding function call in the solution. Therefore, if you want to give specific feedback, make sure to select a single
argument or a single keyword. To check the first argument, you can best use args = [0], keywords = [], to
test a keyword named check, you’ll want to use args = [], keywords = ['check'].

Example 4: Methods

Python also features methods, i.e. functions that are called on objects. For testing such a thing, you can also use
test_function(). Consider the following solution code, that creates a connection to an SQLite Database with
sqlalchemy.

*** =solution
```{python}
from urllib.request import urlretrieve
from sqlalchemy import create_engine, MetaData, Table
engine = create_engine('sqlite:///census.sqlite')
metadata = MetaData()
connection = engine.connect()
from sqlalchemy import select
census = Table('census', metadata, autoload=True, autoload_with=engine)
stmt = select([census])

execute the query and fetch the results.
connection.execute(stmt).fetchall()
```

To test the last chained method calls, you can use the following SCT. Notice from the second test_function()
call here that you have to describe the entire chain (leaving out the arguments that are passed to execute()). This
way, you explicitly list the order in which the methods should be called.

*** =sct
```
test_function("connection.execute", do_eval = False)
test_function("connection.execute.fetchall")
```

NOTE: currently, it is not possible to easily test the arguments inside chained method calls, methods inside arguments,
etc. We are working on a massive update of pythonwhat to easily support this very customized testing, with virtually
no limit to ‘how deep you want the tests to go’. More on this later!

do_eval

With do_eval, you can control how arguments are compared between student and solution code.

• If do_eval is True, the evaluated version of the arguments are compared;

• If do_eval is False, the ‘string version’ of the argumetns are compared;

80 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

• If do_eval is None, the arguments are not compared; in this case, test_function() simply checks if
you specified the arguments, without further checks.

Function calls in packages

If you’re testing whether function calls of particular packages are used correctly, you should always refer to these
functions with their ‘full name’. Suppose you want to test whether the function show of matplotlib.pyplot
was used correctly, you should use

*** =sct
```{python}
test_function("matplotlib.pyplot.show")
```

The test_function() call can handle it when a student used aliases for the python packages (all import and
import * from * calls are supported). In case there is an error, test_function() will automatically gener-
ated a feedback message that uses the alias of the student.

NOTE: No matter how you import the function, you always have to refer to the function with its full name, e.g.
package.subpackage1.subpackage2.function.

Argument equality

Just like with test_object(), evaluated arguments are compared using the == operator (check out the section
about Object equality). For a lot of complex objects, the implementation of == causes the object instances to be
compared... not their underlying meaning. For example when the solution is:

*** =solution
from urllib.request import urlretrieve
fn1 = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_998/datasets/
→˓Chinook.sqlite'
urlretrieve(fn1, 'Chinook.sqlite')

# Import packages
from sqlalchemy import create_engine
import pandas as pd

# Create engine: engine
engine = create_engine('sqlite:///Chinook.sqlite')

# Execute query and store records in dataframe: df
df = pd.read_sql_query("SELECT * FROM Album", engine)

And the SCT is:

*** =sct
test_function("pandas.read_sql_query")

The SCT will fail even if the student uses this exact solution code. The reason being that the engine object is
compared in the solution and student process. The engine object is evaluated by create_engine('sqlite://
/Chinook.sqlite'). As you can try out yourself, create_engine('sqlite:///Chinook.sqlite')
== create_engine('sqlite:///Chinook.sqlite') will always be False, even though they are se-
mantically exactly the same. A better way of testing this code would be:

2.1. Legacy Tests 81

https://github.com/datacamp/pythonwhat/wiki/test_object#object-equality
https://github.com/datacamp/pythonwhat/wiki/test_object#object-equality


Pythonwhat Documentation, Release 1.2.0

*** =sct
test_correct(

lambda: test_object("df"),
lambda: test_function("pandas.read_sql_query", do_eval=False)

)

This SCT will not do exactly the same, but it will test enough in practice 99% of the time. Check out the section about
Object equality for complex objects that do have a good equality implementation.

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

test_function_v2

test_function_v2(name, index=1, params=[], signature=None, eq_condition=’equal’,
do_eval=True, not_called_msg=None, params_not_matched_msg=None,
params_not_specified_msg=None, incorrect_msg=None, add_more=False, high-
light=True, state=None)

Test if function calls match (v2).

This function compares a function call in the student’s code with the corresponding one in the solution code.
It will cause the reporter to fail if the corresponding calls do not match. The fail message that is returned will
depend on the sort of fail.

Parameters

• name (str) – the name of the function to be tested.

• index (int) – index of the function call to be checked. Defaults to 1.

• params (list(str)) – the parameter names of the function call that you want to check.

• signature (Signature) – Normally, test_function() can figure out what the function
signature is, but it might be necessary to use build_sig to manually build a signature and
pass this along.

• eq_condition (str) – how parameters are compared. Currently, only “equal” is sup-
ported, meaning that the arguments in student and solution process should have exactly the
same value.

• do_eval (list(bool)) – Boolean or list of booleans (parameter-specific) that specify
whether or not arguments should be evaluated. True: arguments are evaluated and com-
pared. False: arguments are not evaluated but ‘string-matched’. None: arguments are not
evaluated; it is only checked if they are specified.

• not_called_msg (str) – custom feedback message if the function is not called.

• params_not_matched_message (str) – custom feedback message if the function
parameters were not successfully matched.

• params_not_specified_msg (str) – string or list of strings (parameter-specific).
Custom feedback message if not all parameters listed in params are specified by the student.

• incorrect_msg (list(str)) – string or list of strings (parameter-specific). Custom
feedback messages if the arguments don’t correspond between student and solution code.

test_function_v2(name,
index=1,
params=None,

82 Chapter 2. Pythonwhat V1

https://github.com/datacamp/pythonwhat/wiki/test_object#object-equality
https://github.com/datacamp/pythonwhat/wiki/test_object#object-equality
https://github.com/datacamp/pythonwhat/wiki/Processes


Pythonwhat Documentation, Release 1.2.0

signature=None,
eq_condition="equal",
do_eval=True,
not_called_msg=None,
params_not_matched_msg=None,
params_not_specified_msg=None,
incorrect_msg=None)

test_function_v2() enables you to test whether the student called a function correctly. The function first tests
if the specified function is actually called by the student, and then compares the call with calls of the function in the
solution code. Next, it can compare the arguments passed to these functions. Because test_function_v2()
also uses the student and solution process, this can be done in a very concise way. test_function_v2() is an
improved version of test_function(), where:

• there is resilience against different ways of calling a function (arguments vs keywords),

• you have to be specific about which parameters you want to check,

• you can specify parameter-specific evaluation forms (do_eval can be a list),

• you can specify parameter-specific custom messages (params_not_matched_msg and
params_not_specified_msg can be lists),

• you have more control over messaging in general.

Example 1

Suppose you want the student to call the round() function on pi, as follows:

*** =solution
```{python}
This is pi
pi = 3.14159

Round pi to 3 digits
r_pi = round(pi, 3)
```

The following SCT tests whether the round() function is used correctly:

*** =sct
```{python}
test_function_v2("round", params=["number", "ndigits"])
success_msg("Great job!")
```

test_function_v2() tests whether the student has called the function round() and checks whether the values
of the arguments are the same as in the solution. So in this case, it tests whether round() is used and the number
and ndigits parameters, that round() expects, are specified correctly, i.e. equal to 3.14159 and 3 respectively.
test_function_v2() figures out the values of these arguments from the solution code and the solution process
that corresponds with it. The above SCT would accept all of the following student submissions:

• round(3.14159, 3)

• round(number=3.14159, 3)

• round(number=3.14159, ndigits=3)

• round(ndigits=3, number=3.14159)

2.1. Legacy Tests 83



Pythonwhat Documentation, Release 1.2.0

• pi=3.14159; dig=3; round(pi, dig)

• pi=3.14159; dig=3; round(number=pi, dig)

• int_part = 3; dec_part = 0.14159; round(int_part + dec_part, 3)

In params, you have to explicitly list all the parameters that you want to test. If you only want to check the number
parameter, for example, you can use:

*** =sct
```{python}
test_function_v2("round", params=["number"])
success_msg("Great job!")
```

This SCT will only test whether the number parameter was specified to be 3.14159. If a student submits
round(pi, 5), this would also pass this SCT.

If you specify params to be an empty list, which is the default, you are simply checking whether the round()
function was called in the first place:

*** =sct
```{python}
test_function_v2("round") # same as test_function_v2("round", params=[])
success_msg("Great job!")
```

test_function_v2()will automatically generate meaningful feedback, but you can also override these messages
through the different *_msg parameters that test_function_v2() features:

• not_called_msg: message if the student didn’t call the specified function or didn’t call the specified function
often enough (if you’re testing multiple calls of the same function in the same submission).

• params_not_matched_msg: message if the function call of the student was invalid, i.e. if the way of
specifying the different parameters was invalid.

• params_not_specified_msg: message if the student did not specify all parameters that are specified in-
side params. This argument can either be a string, to give the same message for each parameter that is missing,
or a list of strings with the same length as params. In case of a missing parameter, test_function_v2()
will present the corresponding message.

• incorrect_msg: message if the student did not specify all parameters correctly, so when his or her specifi-
cations don’t correspond with the solution. This argument can again be a single string, or a list of parameter-
specific feedback messages.

Below is an example of an SCT that specified all feedback messages. This is not required, though; you can
depend on the automatic feedback messages for the not_called_msg, params_not_specified_msg and
incorrect_msg and only manually specify the params_not_matched_msg, for example.

*** =sct
```{python}
test_function_v2("round", params=["number", "ndigits"]

not_called_msg="You did not call `round()` to round the irrational
→˓number, `pi`.",

params_not_matched_msg="Are you sure you correctly called the
→˓`round()` function?",

params_not_specified_msg="Make sure to specify both the `number` and
→˓`ndigits` parameter!",

incorrect_msg=["Make sure to correctly specify `number`; it should
→˓be `pi`, or `3.14159`.",

"Have you specified `ndigits` so that `pi` is rounded
→˓to 3 digits?"])

84 Chapter 2. Pythonwhat V1

Pythonwhat Documentation, Release 1.2.0

success_msg("Great job!")
```

Example 2: Multiple function calls

index, which is 1 by default, becomes important when there are several calls of the same function. Suppose that
your exercise requires the student to call the round() function twice: once on pi and once on e, Euler’s number. A
possible solution could be the following:

*** =solution
```{python}
Call round on pi
round(3.14159, 3)

Call round on e
round(2.71828, 3)
```

To test both these function calls, you’ll need the following SCT:

*** =sct
```{python}
test_function_v2("round", params=["number","ndigits"], index=1)
test_function_v2("round", params=["number","ndigits"], index=2)
success_msg("Two in a row, great!")
```

The first test_function_v2() call, where index=1, checks the solution code for the first function call of
round(), finds it - round(3.14159, 3) - and then goes to look through the student code to find a function
call of round() that matches the arguments. It is perfectly possible that there are 5 function calls of round()
in the student’s submission, and that only the fourth call matches the requirements for test_function_v2().
As soon as a function call is found in the student code that passes all tests, pythonwhat heads over to the second
test_function_v2() call, where index=2. The same thing happens: the second call of round() is found
from the solution code, and a match is sought for in the student code. This time, however, the function call that was
matched before is now ‘blacklisted’; it is not possible that the same function call in the student code causes both
test_function_v2() calls to pass.

This means that all of the following student submissions would be accepted:

• round(3.14159, 3); round(2.71828, 3)

• round(2.71828, 3); round(3.14159, 3)

• round(number=3.14159, ndigts=3); round(number=2.71828, 3)

• round(number=2.71828, 3); round(number=3.14159, 3)

• round(3.14159, 3); round(123.456); round(2.71828, 3)

• round(2.71828, 3); round(123.456); round(3.14159, 3)

Of course, you can also specify all other arguments to customize your test to perfection, such as custom messages and
do_eval (example 3).

2.1. Legacy Tests 85



Pythonwhat Documentation, Release 1.2.0

Example 3: do_eval

With do_eval, you can control how parameter specifications are compared between student and solution code. There
are two ways to specify do_eval: you can specify a single value, that will be used for comparing all params that
you specified. However, you can also specify a list of values, with the same length as params; the way in which
parameter specifications are compared becomes parameter specific. In both cases, there are three valid values:

• True, where the evaluated version of the student and solution arguments is compared.

• False, where the ‘string version’ of the arguments is compared;

• None, in which case the arguments are not compared; test_function_v2 simply checks if the parameter(s)
in question has/have been specified.

Say, for example, you want to check if a student called the round() function and specified the parameters number
and ndigits. You want to test the actual equality of number, but you don’t care about the value of ndigits, you
just want to make sure the student specified it, nothing more.

The following solution and SCT implement this train of thought (custom feedback messages have not been specified,
although this is perfectly possible):

*** =solution
```{python}
This is pi
pi = 3.14159

Round pi to 3 digits
r_pi = round(pi, 3)
```

*** =sct
```{python}
test_function_v2("round",

params=["number", "ndigits"],
do_eval=[True, None])

success_msg("Great job!")
```

All of the following submissions would be accepted by this SCT:

• round(pi, 3)

• round(number=pi, ndigits=3)

• round(number=pi, ndigits=4)

• round(pi, 4)

• round(pi, 0)

Example 4: Function calls in packages

If you’re testing whether function calls of particular packages are used correctly, you should always refer to these
functions with their ‘full name’. Suppose you want to test whether the function show of matplotlib.pyplot
was used correctly, you should use

*** =sct
```{python}
test_function_v2("matplotlib.pyplot.show")
```

86 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

The test_function_v2() call can handle it when a student used aliases for the python packages (all import
and import * from * calls are supported). In case there is an error, test_function_v2()will automatically
generated a feedback message that uses the alias that the student used.

NOTE: No matter how you import the function, you always have to refer to the function with its full name, e.g.
package.subpackage1.subpackage2.function.

Example 5: Manual signatures

To implement resilience against different ways of specify function parameters, the inspect module is used, that is
part of Python’s basic distribution. Through inspect.signature() a function’s parameters can be inferred, and
then ‘bound’ to the arguments that the student specified. However, this signature is not available for all of Python’s
functions. More specifically, Python’s built-in functions that are implemented in C don’t allow a signature to be
extracted from them. pythonwhat already includes manually specified signatures for functions such as print(),
str(), hasattr(), etc, but it’s still possible that some signatures are missing.

That’s why test_function_v2() features a signature parameter, that is None by default. If pythonwhat
can’t retrieve a signature for the function you want to test, you can pass an object of the class inspect.Signature
to the signature parameter.

Suppose, for the sake of example, that test_function_v2() can’t find a signature for the round() function
(you will be informed by this through automated testing; running the solution against an SCT that depends on a
signature that is not found will throw a backend error). To be able to implement this function test, you can use the
sig_from_params() function:

*** =sct
```{python}
sig = sig_from_params(param("number", param.POSITIONAL_OR_KEYWORD),

param("ndigits", param.POSITIONAL_OR_KEYWORD, default=0))
test_function_v2("round", params=["number", "ndigits"], signature=sig)
```

param is an alias of the Parameter class that’s inside the inspect module. You can pass
sig_from_params() as many parameters as you want. The first argument of param() should be the name
of the parameter, the second argument should be the ‘kind’ of parameter. param.POSITIONAL_OR_KEYWORD
tells test_function_v2 that the parameter can be specified either through a positional argument or through a
keyword argument. Other common possibilities are param.POSITIONAL_ONLY and param.KEYWORD_ONLY
(for a full list, refer to the Python docs on inspect). The third, optional argument, allows you to specify a default
value for the parameter.

NOTE: If you find vital Python functions that are used very often and that are not included in pythonwhat by
default, you can let us know and we’ll add the function to our list of manual signatures.

Example 6: Methods

Python also features methods, i.e. functions that are called on objects. For testing such a thing, you can also use
test_function_v2(). Consider the following solution code, that creates a connection to an SQLite Database
with sqlalchemy.

*** =solution
```{python}
Prepare everything

from urllib.request import urlretrieve from sqlalchemy import create_engine, MetaData, Table engine = cre-
ate_engine(‘sqlite:///census.sqlite’) metadata = MetaData() connection = engine.connect() from sqlalchemy import
select census = Table(‘census’, metadata, autoload=True, autoload_with=engine) stmt = select([census])

2.1. Legacy Tests 87

https://docs.python.org/3.4/library/inspect.html#inspect.Parameter
https://github.com/datacamp/pythonwhat/blob/master/docs/source/pythonwhat.wiki/mailto:content-engineering@datacamp.com
https://github.com/datacamp/pythonwhat/blob/master/pythonwhat/signatures.py

Pythonwhat Documentation, Release 1.2.0

execute the query and fetch the results.
connection.execute(stmt).fetchall()
```

To test the last chained method calls, you can use the following SCT. Notice from the second
test_function_v2() call here that you have to describe the entire chain (leaving out the arguments that are
passed to execute()). This way, you explicitly list the order in which the methods should be called.

*** =sct
```{python}
test_function_v2("connection.execute", params = ["object"], do_eval = False)
test_function_v2("connection.execute.fetchall")
```

NOTE: currently, it is not possible to easily test the arguments inside chained method calls, methods inside arguments,
etc. We are working on a massive update of pythonwhat to easily support this very customized testing, with virtually
no limit to ‘how deep you want the tests to go’. More on this later!

Example 7: Signatures for methods

In the previous example, you might have noticed that test_funtion_v2() was capable to infer that
connection is a Connection object, and that execute() is a method of the Connection class. For checking
method calls that aren’t chained, this is possible, but for chained method calls, such as connection.execute.
fetchall, this is not possible. In those cases you’ll have to manually specify a signature. With sig_from_obj()
you can specify the function from which to extract a signature.

The following full example shows how it’s done:

*** =pre_exercise_code
```{python}
class Test():

def __init__(self, a):
self.a = a

def set_a(self, value):
self.a = value
return(self)

x = Test(123)
```

*** =solution
```{python}
x.set_a(843).set_a(102)
```

*** =sct
```{python}
sig = sig_from_obj('x.set_a')
test_function_v2('x.set_a.set_a', params=['value'], signature=sig)
```

NOTE: You can also use the sig_from_params() function to manually build the signature from scratch, but this
this more work than simply specifying the function object as a string from which to extract the signature.

88 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

Extra: Argument equality

Just like with test_object(), evaluated arguments are compared using the == operator (check out the section
about Object equality). For a lot of complex objects, the implementation of == causes the object instances to be
compared... not their underlying meaning. For example when the solution is:

*** =solution
```
from urllib.request import urlretrieve
fn1 = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_998/datasets/
→˓Chinook.sqlite'
urlretrieve(fn1, 'Chinook.sqlite')
from sqlalchemy import create_engine
import pandas as pd
engine = create_engine('sqlite:///Chinook.sqlite')

Execute query and store records in dataframe: df
df = pd.read_sql_query("SELECT * FROM Album", engine)
```

And the SCT is:

*** =sct
```
test_function_v2("pandas.read_sql_query", params = ['sql', 'con'], do_eval = [True,
→˓False])
```

The SCT will fail even if the student uses this exact solution code. The reason being that the engine object is
compared in the solution and student process. The engine object is evaluated by create_engine('sqlite://
/Chinook.sqlite'). As you can try out yourself, create_engine('sqlite:///Chinook.sqlite')
== create_engine('sqlite:///Chinook.sqlite') will always be False, even though they are se-
mantically exactly the same. A better way of testing this code would be:

*** =sct
test_correct(

lambda: test_object("df"),
lambda: test_function_v2("pandas.read_sql_query", do_eval=False)

)

This SCT will not do exactly the same, but it will test enough in practice 99% of the time. Check out the section about
Object equality for complex objects that DO have a good equality implementation.

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

test_lambda_function

test_lambda_function(index, arg_names=True, arg_defaults=True, body=None, results=[], er-
rors=[], not_called_msg=None, nb_args_msg=None, arg_names_msg=None,
arg_defaults_msg=None, wrong_result_msg=None, no_error_msg=None, ex-
pand_message=True, state=None)

Test a lambda function definition.

This function helps you test a lambda function definition. Generally four things can be tested:

2.1. Legacy Tests 89

https://github.com/datacamp/pythonwhat/blob/master/docs/source/pythonwhat.wiki/test_object.md#object-equality
https://github.com/datacamp/pythonwhat/blob/master/docs/source/pythonwhat.wiki/test_object.md#object-equality
https://github.com/datacamp/pythonwhat/blob/master/docs/source/pythonwhat.wiki/test_object.md#object-equality
https://github.com/datacamp/pythonwhat/blob/master/docs/source/pythonwhat.wiki/test_object.md#object-equality


Pythonwhat Documentation, Release 1.2.0

1. The argument names of the function (including if the correct defaults are used)

2. The body of the functions (does it output correctly, are the correct functions used)

3. The return value with a certain input

4. Whether certain inputs generate an error

Custom feedback messages can be set for all these parts, default messages are generated automatically if none
are set.

Parameters

• index (int) – the number of the lambda function you want to test.

• arg_names (bool) – if True, the argument names will be tested, if False they won’t be
tested. Defaults to True.

• arg_defaults (bool) – if True, the default values of the arguments will be tested, if
False they won’t be tested. Defaults to True.

• body – this arguments holds the part of the code that will be ran to check the body of the
function definition. It should be passed as a lambda expression or a function. The functions
that are ran should be other pythonwhat test functions, and they will be tested specifically
on only the body of the for loop. Defaults to None.

• results (list(str)) – a list of strings representing function calls to the lam function.
The lam function will be replaced by the actual lambda function from the student and solu-
tion code. The result of calling the lambda function will be compared between student and
solution.

• errors (list(str)) – a list of strings representing function calls to the lam function.
The lam function will be replaced by the actual lambda function from the student and solu-
tion code. It will be checked if an error is generated appropriately for the specified inputs.

• not_called_msg (str) – message if the function is not defined.

• nb_args_msg (str) – message if the number of arguments do not matched.

• arg_names_msg (str) – message if the argument names do not match.

• arg_defaults_msg (str) – message if the argument default values do not match.

• wrong_result_msg (str) – message if one of the tested function calls’ result did not
match.

• no_error_msg (str) – message if one of the tested function calls’ result did not generate
an error.

• expand_message (bool) – only relevant if there is a body test. If True, feedback mes-
sages defined in the body test will be preceded by ‘In your definition of ___, ‘. If False,
test_function_definition() will generate no extra feedback if the body test fails.
Defaults to True.

def test_lambda_function(index,
arg_names=True,
arg_defaults=True,
body=None,
results=None,
errors=None,
not_called_msg=None,
nb_args_msg=None,
arg_names_msg=None,
arg_defaults_msg=None,

90 Chapter 2. Pythonwhat V1



Pythonwhat Documentation, Release 1.2.0

wrong_result_msg=None,
no_error_msg=None,
expand_message=True)

With test_function_definition(), you can only test user-defined functions that have a name. There
is an important class of functions in Python that go by the name of lambda functions. These functions are
anonymous, so they don’t necessarily require a name. To be able to test user-coded lambda functions, the
test_lambda_function() is available. If you’re familiar with test_function_definition(), you’ll
notice some similarities. However, instead of the name, you now have to pass the index; this means you have to
specify the lambda function definition to test by number (test the first, second, third ...). Also, because we don’t nec-
essarily have an object represents a lambda function (because it can be anonymous), some tricky things are required
to correctly specify the arguments errors and results; the example will give more details.

Example 1

Suppose we want the student to code a lambda function that takes two arguments, word and echo, the latter of which
should have default value 1. The lambda function should return the product of word and echo. A solution to this
challenge could be the following:

*** =solution
```{python}
echo_word = lambda word, echo = 1: word * echo
```

To test this lambda function definition, you can use the following SCT:

*** =sct
```
test_lambda_function(1,

body = lambda: test_student_typed('word'),
results = ["lam('test', 2)"],
errors = ["lam('a', '2')"])

```

With 1, we tell pythonwhat to test the first lambda function it comes across. Through body, we can specify sub-
SCTs to be tested on the body of the lambda function (similar to how test_function_definition does it).
With results and errors, you can test the lambda function definition for different input arguments. Notice here
that you have to specify a list of function calls as a string. The function you have to call is lam(); behind the
scenes, this lam will be replaced by the actual lambda function the student and solution defined. This means that
lam('test', 2) will be converted into:

```
(lambda word, echo = 1: word * echo)('test', 2)
```

That way, the system can run the function call, and compare the results between function and solution. Things work
the same way for errors.

As usual, the test_lambda_function() will generate a bunch of meaningful automated messages depending
on which error the student made (you can override all these messages through the *_msg argument):

submission: <empty>
feedback: "The system wants to check the first lambda function you defined but hasn't
→˓found it."

submission: echo_word = lambda wrd: wrd * 1

2.1. Legacy Tests 91



Pythonwhat Documentation, Release 1.2.0

feedback: "You should define the first lambda function with 2 arguments, instead got
→˓1."

submission: echo_word = lambda wrd, echo: wrd * echo
feedback: "In your definition of the first lambda function, the first argument should
→˓be called <code>word</code>, instead got <code>wrd</code>."

submission: echo_word = lambda word, echo = 2: word * echo
feedback: "In your definition of the first lambda function, the second argument
→˓should have <code>1</code> as default, instead got <code>2</code>."

submission: echo_word = lambda word, echo = 1: 2 * echo
feedback: "In your definition of the first lambda function, could not find the
→˓correct pattern in your code."

submission: echo_word = lambda word, echo = 1: word * echo + 1
feedback: "Calling the the first lambda function with arguments <code>('test', 2)</
→˓code> should result in <code>testtest</code>, instead got an error."

submission: echo_word = lambda word, echo = 1: word * echo * 2
feedback = "Calling the first lambda function with arguments <code>('test', 2)</code>
→˓should result in <code>testtest</code>, instead got <code>testtesttesttest"

submission: echo_word = lambda word, echo = 1: word * int(echo)
feedback: "Calling the first lambda function with the arguments <code>('a', '2')</
→˓code> doesn't result in an error, but it should!"

submission: echo_word = lambda word, echo = 1: word * echo
feedback: "Great job!" (pass)

What about testing usage?

This is practically impossible to do in a robust way; we suggest you do this in an indirect way (checking the output
that should be generated, checking the object that should be created, etc).

NOTE: Behind the scenes, pythonwhat has to fetch the value of objects from sub-processes. The required ‘dilling’
and ‘undilling’ can cause issues for exotic objects. For more information on this and possible errors that can occur,
read the Processes article.

92 Chapter 2. Pythonwhat V1



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

93



Pythonwhat Documentation, Release 1.2.0

94 Chapter 3. Indices and tables



Python Module Index

p
pythonwhat.test_funcs.test_correct, 31
pythonwhat.test_funcs.test_for_loop, 59
pythonwhat.test_funcs.test_function_definition,

71
pythonwhat.test_funcs.test_import, 4
pythonwhat.test_funcs.test_lambda_function,

89
pythonwhat.test_funcs.test_mc, 12
pythonwhat.test_funcs.test_object_after_expression,

48
pythonwhat.test_funcs.test_operator, 41
pythonwhat.test_funcs.test_or, 33
pythonwhat.test_funcs.test_output_contains,

9
pythonwhat.test_funcs.test_student_typed,

10
pythonwhat.test_funcs.test_try_except,

66
pythonwhat.test_funcs.test_while_loop,

68

95



Pythonwhat Documentation, Release 1.2.0

96 Python Module Index



Index

C
check_object() (in module pythonwhat.check_object), 8

F
fail() (in module pythonwhat.check_funcs), 18

H
has_context() (in module python-

what.check_has_context), 16
has_equal_ast() (in module pythonwhat.check_funcs), 11
has_equal_key() (in module pythonwhat.check_object), 9
has_expr() (in module pythonwhat.check_funcs), 23
has_key() (in module pythonwhat.check_object), 8

I
is_instance() (in module pythonwhat.check_object), 8

M
multi() (in module pythonwhat.check_funcs), 15

P
pythonwhat.test_funcs.test_correct (module), 31
pythonwhat.test_funcs.test_for_loop (module), 59
pythonwhat.test_funcs.test_function_definition (module),

71
pythonwhat.test_funcs.test_import (module), 4
pythonwhat.test_funcs.test_lambda_function (module),

89
pythonwhat.test_funcs.test_mc (module), 12
pythonwhat.test_funcs.test_object_after_expression

(module), 48
pythonwhat.test_funcs.test_operator (module), 41
pythonwhat.test_funcs.test_or (module), 33
pythonwhat.test_funcs.test_output_contains (module), 9
pythonwhat.test_funcs.test_student_typed (module), 10
pythonwhat.test_funcs.test_try_except (module), 66
pythonwhat.test_funcs.test_while_loop (module), 68

S
set_context() (in module pythonwhat.check_funcs), 17

T
test_correct() (in module python-

what.test_funcs.test_correct), 31
test_dictionary() (in module python-

what.test_funcs.test_dictionary), 40
test_expression_output() (in module python-

what.test_funcs.test_expression_output),
43

test_expression_result() (in module python-
what.test_funcs.test_expression_result), 46

test_for_loop() (in module python-
what.test_funcs.test_for_loop), 59

test_function() (in module python-
what.test_funcs.test_function), 76

test_function_definition() (in module python-
what.test_funcs.test_function_definition),
71

test_function_v2() (in module python-
what.test_funcs.test_function), 82

test_if_else() (in module python-
what.test_funcs.test_if_else), 61

test_if_exp() (in module python-
what.test_funcs.test_if_else), 64

test_import() (in module python-
what.test_funcs.test_import), 4

test_lambda_function() (in module python-
what.test_funcs.test_lambda_function), 89

test_mc() (in module pythonwhat.test_funcs.test_mc), 12
test_object() (in module python-

what.test_funcs.test_object), 5
test_object_accessed() (in module python-

what.test_funcs.test_object_accessed), 51
test_object_after_expression() (in module python-

what.test_funcs.test_object_after_expression),
48

test_operator() (in module python-

97



Pythonwhat Documentation, Release 1.2.0

what.test_funcs.test_operator), 41
test_or() (in module pythonwhat.test_funcs.test_or), 33
test_output_contains() (in module python-

what.test_funcs.test_output_contains), 9
test_student_typed() (in module python-

what.test_funcs.test_student_typed), 10
test_try_except() (in module python-

what.test_funcs.test_try_except), 66
test_while_loop() (in module python-

what.test_funcs.test_while_loop), 68
test_with() (in module pythonwhat.test_funcs.test_with),

69

W
with_context() (in module pythonwhat.check_funcs), 18

98 Index


	Contents:
	Home
	Quickstart Guide
	Simple Tests
	Part Checks
	Expressions
	Logic Tests
	Spec2 Changes

	Pythonwhat V1
	Legacy Tests

	Indices and tables
	Python Module Index

